Publications by authors named "Rene Heideman"

Aflatoxins (AF) are naturally occurring mycotoxins, produced by many species of Aspergillus. Among aflatoxins, Aflatoxin M1 (AFM1) is one of the most frequent and dangerous for human health. The acceptable maximum level of AFM1 in milk according to EU regulation is 50 ppt, equivalent to 152 pM, and 25 ppt, equivalent to 76 pM, for adults and infants, respectively.

View Article and Find Full Text PDF

In order to realize the multi-analyte assays for environmental contaminants, an optical biosensor utilizing laser-induced fluorescence-based detection via the binding of biomolecules to the surface of an integrated TriPleX™ waveguide chip on a glass substrate (fused silica, FS) is described. As far as we know, this is the first demonstration of using the TriPleX™ technology to fabricate the waveguide chip on a FS substrate. The sensor consists of 32 individually addressable sensor patches, which were formed on the chip surface by exploiting 3 Y-junction splitters, creating four equal rows of eight evanescently excited windows in parallel.

View Article and Find Full Text PDF

We extend our previous simulation study and we present experimental results regarding our Fast Fourier Transform method for the calculation of the resonance shifts in biosensors based on micro-ring resonators (MRRs). For the simulation study, we use a system model with a tunable laser at 850 nm, an MRR with 1.5∙10 quality factor, and a detection system with 50 dB maximum signal-to-noise ratio, and investigate the impact on the system performance of factors like the number of the resonance peaks inside the scanning window, the wavelength dependence of the laser power, and the asymmetry of the transfer functions of the MRRs.

View Article and Find Full Text PDF

We demonstrate supercontinuum generation in stoichiometric silicon nitride (SiN in SiO) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 µm with a pulse duration of 120 fs.

View Article and Find Full Text PDF

It is still a common belief that ultra-high quality-factors (Q-factors) are a prerequisite in optical resonant cavities for high refractive index resolution and low detection limit in biosensing applications. In combination with the ultra-short steps that are necessary when the measurement of the resonance shift relies on the wavelength scanning of a laser source and conventional methods for data processing, the high Q-factor requirement makes these biosensors extremely impractical. In this work we analyze an alternative processing method based on the fast-Fourier transform, and show through Monte-Carlo simulations that improvement by 2-3 orders of magnitude can be achieved in the resolution and the detection limit of the system in the presence of amplitude and spectral noise.

View Article and Find Full Text PDF

In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si₃N₄ Asymmetric Mach-Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab'). We measured a best volumetric sensitivity of 10⁴ rad/RIU, leading to a Limit of Detection below 5 × 10(-7) RIU. On sensors functionalized with Fab', we performed specific and non-specific sensing measurements at various toxin concentrations.

View Article and Find Full Text PDF

We report ultra-broadband supercontinuum generation in high-confinement Si3N4 integrated optical waveguides. The spectrum extends through the visible (from 470 nm) to the infrared spectral range (2130 nm) comprising a spectral bandwidth wider than 495 THz, which is the widest supercontinuum spectrum generated on a chip.

View Article and Find Full Text PDF

We will demonstrate a stress-optic phase modulator in the passive SiN-based TriPleX platform using a layer of piezoelectric material. Regarding the stress-optic effect, the piezoelectric layer deposited on top of an optical waveguide is employed to control the phase of propagating light in the structure by applying an electrical field across the layer. In this work, it is demonstrated that the stress-optic effect lowers the power consumption by a factor of one million for quasi-DC operation and increases the modulation speed by three orders of magnitude, compared to currently used thermo-optic modulation in the TriPleX platform.

View Article and Find Full Text PDF

In this paper we present a novel fabrication technique for silicon nitride (Si(3)N(4)) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si(3)N(4). Using this technique no stress-induced cracks in the Si(3)N(4) layer were observed resulting in a high yield of devices on the wafer.

View Article and Find Full Text PDF

We present a new approach to the dual-beam geometry for on-chip optical trapping and Raman spectroscopy, using waveguides microfabricated in TripleX technology. Such waveguides are box shaped and consist of SiO2 and Si3N4, so as to provide a low index contrast with respect to the SiO2 claddings and low loss, while retaining the advantages of Si3N4. The waveguides enable both the trapping and Raman functionality with the same dual beams.

View Article and Find Full Text PDF

The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients.

View Article and Find Full Text PDF

We propose and experimentally demonstrate the working principles of two novel microwave photonic (MWP) beamformer circuits operating with phase modulation (PM) and direct detection (DD). The proposed circuits incorporate two major signal processing functionalities, namely a broadband beamforming network employing ring resonator-based delay lines and an optical sideband manipulator that renders the circuit outputs equivalent to those of intensity-modulated MWP beamformers. These functionalities allow the system to employ low-circuit-complexity modulators and detectors, which brings significant benefits on the system construction cost and operation stability.

View Article and Find Full Text PDF

In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability.

View Article and Find Full Text PDF

We report a simple technique in microwave photonic (MWP) signal processing that allows the use of an optical filter with a shallow notch to exhibit a microwave notch filter with anomalously high rejection level. We implement this technique using a low-loss, tunable Si₃N₄ optical ring resonator as the optical filter, and achieved an MWP notch filter with an ultra-high peak rejection > 60 dB, a tunable high resolution bandwidth of 247-840 MHz, and notch frequency tuning of 2-8 GHz. To our knowledge, this is a record combined peak rejection and resolution for an integrated MWP filter.

View Article and Find Full Text PDF

We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleX™) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems.

View Article and Find Full Text PDF

We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas.

View Article and Find Full Text PDF

We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer.

View Article and Find Full Text PDF

In this paper we describe the system integration and the experimental demonstration of a photonically beamformed four-element receiving array antenna for radio astronomy applications. To our knowledge, the work described here is the first demonstration of the squint-free, continuously tunable beamsteering capability offered by an integrated photonic beamformer based on optical ring resonator true-time-delay units, with measured radiation patterns. The integrated beamformer is realized in a low loss, complementary metal-oxide-semiconductor (CMOS) compatible optical waveguide technology.

View Article and Find Full Text PDF

We demonstrate a wafer-bonded silica-on-silicon planar waveguide platform with record low total propagation loss of (0.045 ± 0.04) dB/m near the free space wavelength of 1580 nm.

View Article and Find Full Text PDF

We report, for the first time, an integrated photonic signal processor consisting of a reconfigurable optical delay line (ODL) with a separate carrier tuning (SCT) unit and an optical sideband filter on a single CMOS compatible photonic chip. The processing functionalities are carried out with optical ring resonators as building blocks. We show that the integrated approach together with the use of SCT technique allows the implementation of a wideband, fully-tunable ODL with reduced complexity.

View Article and Find Full Text PDF

We characterize an approach to make ultra-low-loss waveguides using stable and reproducible stoichiometric Si3N4 deposited with low-pressure chemical vapor deposition. Using a high-aspect-ratio core geometry, record low losses of 8-9 dB/m for a 0.5 mm bend radius down to 3 dB/m for a 2 mm bend radius are measured with ring resonator and optical frequency domain reflectometry techniques.

View Article and Find Full Text PDF

We report the application of an integrated optical Young interferometer sensor for ultrasensitive, real-time, direct detection of viruses. We have validated the sensor by detecting herpes simplex virus type 1 (HSV-1), but the principle is generally applicable. Detection of HSV-1 virus particles was performed by applying the virus sample onto a sensor surface coated with a specific antibody against HSV-1.

View Article and Find Full Text PDF

We demonstrate that in a sensor based on a multichannel Young interferometer, the phase information obtained for different pairs of channels can be used to correct the long-term instability (drift) due to temperature differences between measuring and reference channels, the drift in the alignment of the setup, etc. Experiments show that the nature of a major part of the drift is such that the drift present in one of the channels can be determined by interpolation of the drift measured in the two adjacent channels. It is shown that a drift reduction of 10 times can be achieved as compared with the situation in which no correction is applied.

View Article and Find Full Text PDF

We report on the design, realization, and characterization of a four-channel integrated optical Young interferometer device that enables simultaneous and independent monitoring of three binding processes. The generated interference pattern is recorded by a CCD camera and analyzed with a fast-Fourier-transform algorithm. We present a thorough theoretical analysis of such a device.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: