Publications by authors named "Rene Gaigher"

The Greater Cape Floristic Region at the southern tip of Africa is a global megadiversity hotspot. The region's biodiversity has been driven by a long history of topographic, climatic, and sea level change coupled with geological uplift, and without being exposed to any major climate events such as glaciations since the breakup of Gondwana. Among arthropods, this long history has led to the survival of many ancient lineages, manifested by much disparity followed by considerable speciation in more recent times, with the emergence of many cryptic species flocks.

View Article and Find Full Text PDF

Humanity relies on soil fauna for important ecosystem services, as such our soils need sustainable management to ensure long-term biotic viability. However, environmental factors influencing the distribution and diversity of soil fauna are poorly understood, which limits effective conservation management. To address this issue, we assessed the influence of variables at different spatial scales (site, soil, and landscape) in different biotopes (natural forest patches and grasslands) in two contrasting geographical regions (inland Midlands and coastal Zululand, South Africa) on ant and springtail diversity in large-scale conservation corridors among commercial plantations.

View Article and Find Full Text PDF

Wild bees are threatened by multiple interacting stressors, such as habitat loss, land use change, parasites, and pathogens. However, vineyards with vegetated inter-rows can offer high floral resources within viticultural landscapes and provide foraging and nesting habitats for wild bees. Here, we assess how vineyard management regimes (organic vs.

View Article and Find Full Text PDF

Fire is a natural feature of many ecosystems, with some vegetation types highly adapted to fire. However, very little is known about the effect of fire on spiders, especially as fires have become more frequent owing to human activity. We determine whether different spider functional guilds (web builders vs.

View Article and Find Full Text PDF

Fire is a major driver in many ecosystems. Yet, little is known about how different ground-living arthropods survive fire. Using three sampling methods, and time-since-fire (last fire event: 3 months, 1 year, and 7 years), we investigate how ground-living arthropod diversity responds to fire, and how species richness, diversity, abundance, and composition of the four dominant taxa: ants, beetles, cockroaches and mites, respond.

View Article and Find Full Text PDF