Multinuclear platinum anticancer complexes are a proven option to overcome resistance of established anticancer compounds. Transferring this concept to ruthenium complexes led to the synthesis of dinuclear Ru(II)-arene compounds containing a bis(pyridinone)alkane ligand linker. A pronounced influence of the spacer length on the in vitro anticancer activity was found, which is correlated to the lipophilicity of the complexes.
View Article and Find Full Text PDFThe antiproliferative properties of the osmium(II) complexes cis,fac-[Os(II)Cl(2)(DMSO)(3)(L)] and trans,cis,cis-[Os(II)Cl(2)(DMSO)(2)(L)(2)] (L = 1H-pyrazole, 1H-imidazole) were studied in three human cancer cell lines, namely 41M (ovary), SK-BR-3 (breast), and SW480 (colon). Their activities were compared with those of osmium(III) and ruthenium(III) NAMI-A type complexes on HT-29 (colon) and SK-BR-3 cancer cell lines. While IC(50) values of all the Os(II) complexes were found to be >1000 microM in all cell lines, Os and Ru-NAMI-A type complexes showed remarkable antiproliferative activity.
View Article and Find Full Text PDFThree chalcogensemicarbazones, viz., 2-acetylpyridine N,N-dimethylsemicarbazone (HL(1)), 2-acetylpyridine N,N-dimethylthiosemicarbazone (HL(2)) and 2-acetylpyridine N,N-dimethylselenosemicarbazone (HL(3)), their corresponding gallium(III) complexes [Ga(L(1-3))(2)]PF(6) and the ruthenium(III) compound [Ru(L(2))(2)]PF(6) have been prepared and characterised by X-ray crystallography and spectroscopic techniques (IR, UV/vis, (1)H, (13)C, (15)N, (77)Se NMR) in order to elucidate the effect of metal ion complexation and chalcogen donor identity on the cytotoxicity of chalcogensemicarbazones in two human tumour cell lines 41M (ovarian carcinoma) and SK-BR-3 (mammary carcinoma).
View Article and Find Full Text PDFThe osmium(III) complex [(DMSO)2H][trans-OsIIICl4(DMSO)2] (1) has been prepared via stepwise reduction of OsO4 in concentrated HCl using N2H(4).2HCl and SnCl(2).2H2O in DMSO.
View Article and Find Full Text PDFImidazolium [trans-tetrachloro(1H-imidazole)(S-dimethylsulfoxide)ruthenate(III)] (NAMI-A) and indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) are the most promising ruthenium complexes for anticancer chemotherapy. In this study, the azole ligand of NAMI-A was systematically varied (from imidazole of NAMI-A to indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole), and the respective complexes were evaluated with regard to the rate of aquation and protein binding, redox potentials, and cytotoxicity by means of capillary zone electrophoresis, electrospray ionization mass spectrometry, cyclic voltammetry, and colorimetric microculture assays. Stability studies demonstrated low stability of the complexes at pH 7.
View Article and Find Full Text PDFA series of gallium(III) and iron(III) complexes with five different 4N-substituted alpha-N-heterocyclic thiosemicarbazones, viz., 2-acetylpyridine N,N-dimethylthiosemicarbazone (1), 2-acetylpyridine N-pyrrolidinylthiosemicarbazone (2), acetylpyrazine N,N-dimethylthiosemicarbazone (3), acetylpyrazine N-pyrrolidinylthiosemicarbazone (4), and acetylpyrazine N-piperidinylthiosemicarbazone (5), with the general formula [GaLCl2] (HL = 1 and 2) and [ML2][Y] (M = Ga, HL = 1-5, Y = PF6; M = Fe, HL = 1-5, Y = FeCl4 and PF6) were synthesized and characterized by elemental analysis, a number of spectroscopic methods (NMR, IR, UV-vis), mass spectrometry, and X-ray crystallography. The in vitro antitumor potency was studied in two human cancer cell lines (41M and SK-BR-3).
View Article and Find Full Text PDFThe microtubule-associated proteins MAP1A and MAP1B are related but distinct multi-subunit protein complexes that consist of heavy and light chains. The predominant forms of these complexes are homotypic, i.e.
View Article and Find Full Text PDFThe microtubule-associated proteins 1A (MAP1A) and 1B (MAP1B) are distantly related protein complexes consisting of heavy and light chains and are thought to play a role in regulating the neuronal cytoskeleton, MAP1B during neuritogenesis and MAP1A in mature neurons. To elucidate functional differences between MAP1B and MAP1A and to determine the role of the light chain in the MAP1A protein complex, we chose to investigate the functional properties of the light chain of MAP1A (LC2) and compare them with the light chain of MAP1B (LC1). We found that LC2 binds to microtubules in vivo and in vitro and induces rapid polymerization of tubulin.
View Article and Find Full Text PDF