Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an unstable (CTG . CAG)n segment in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. It is commonly accepted that DMPK mRNA-based toxicity is the main contributor to DM1 manifestations; however, not much is known about the significance of the DMPK protein.
View Article and Find Full Text PDFThe myotonic dystrophy protein kinase polypeptide repertoire in mice and humans consists of six different splice isoforms that vary in the nature of their C-terminal tails and in the presence or absence of an internal Val-Ser-Gly-Gly-Gly motif. Here, we demonstrate that myotonic dystrophy protein kinase isoforms exist in high-molecular-weight complexes controlled by homo- and heteromultimerization. This multimerization is mediated by coiled-coil interactions in the tail-proximal domain and occurs independently of alternatively spliced protein segments or myotonic dystrophy protein kinase activity.
View Article and Find Full Text PDFMyotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple protein isoforms carrying distinct C termini. Here, we demonstrate by expressing individual DMPKs in various cell types, including C(2)C(12) and DMPK(-/-) myoblast cells, that unique sequence arrangements in these tails control the specificity of anchoring into intracellular membranes.
View Article and Find Full Text PDFTranscripts of the myotonic dystrophy protein kinase (DMPK) gene, a member of the Rho kinase family, are subject to cell-type specific alternative splicing. An imbalance in the splice isoform profile of DMPK may play a role in the pathogenesis of DM1, a severe multisystemic disorder. Here, we report how structural subdomains determine biochemical properties and subcellular distribution of DMPK isoforms.
View Article and Find Full Text PDF