Publications by authors named "Rence Painappallil Reji"

The future of environmental monitoring, medical diagnostics, and industrial safety depends on developing room-temperature, long-term operable, stable, miniaturized, ultrahigh-performance sensors integrated into the Internet of Things (IoT). While noble metals and high-entropy alloys (HEAs) lead in addressing the limitations of conventional transition-metal dichalcogenides (TMDs) like MoS₂, they face challenges such as high-cost, limited availability, and fabrication complexity. To address this, multifunctional, cost-effective, humidity-insensitive novel phase Ti₀.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on functionalizing ZnO nanoflowers with various hybrid organic molecules to enhance their sensing capabilities for detecting benzylamine vapors in visible light conditions.
  • - Four different porphyrin-conjugated molecules were used for functionalization, resulting in significant improvement in gas adsorption and sensitivity of the sensors, especially with the ZnTP functionalized variant.
  • - Testing revealed a linear increase in response to varying concentrations of benzylamine, leading to high sensitivity (0.0292 ppm) and a low detection limit (197 ppb), supported by theoretical calculations on gas adsorption.
View Article and Find Full Text PDF

Toxic metals present in drinking water pose a serious threat to the environment and human beings when present in abundance. In this work, we investigated the sensing ability of quantum dots (pristine CQDs, boron/nitrogen/sulphur (B/N/S)-doped CQDs, and BNQDs) of various sizes and morphologies (rectangular, circular, and triangular) towards toxic metals such as arsenic (As), cobalt (Co), nickel (Ni), copper (Cu), and lead (Pb) using quantum chemical density functional theory calculations in both gas and water phases. We probed the structural, electronic, and optical properties of the QDs.

View Article and Find Full Text PDF