High performance film capacitor has attracted widespread attention due to their increasing applications in electronic devices. However, the insufficient dielectric properties of dielectrics in capacitors severely restrict their practical application. In this work, the dielectric performances of polyarylene ether nitrile (PEN) are effectively enhanced by the synthesizing and employing of carboxylated PEN (CPEN) modified one-dimensional (1D) strontium barium titanate nanorod (BSTNR) (CPEN@BSTNR), as well as applying of hot stretching technique.
View Article and Find Full Text PDFWith the increasing application of electronic devices, absorption-dominated electromagnetic interference shielding materials (EMISM) have garnered significant attention for preventing secondary electromagnetic pollution. In this study, polyethyleneimine (PEI)-modified MXene (PEI@MXene) is fabricated and achieved its controlled distribution on the pore walls of polyarylene ether nitrile (PEN) porous films via the phase inversion method (PIM) to obtain a closed porous skeleton of MXene on the pore walls (CPS-MPW). The resulting PEI@MXene/PEN composite film (CFx) exhibited absorption-dominated EMIS efficiency (EMISE).
View Article and Find Full Text PDFBackground: This systematic review and meta-analysis aimed to evaluate the efficiency and safety of percutaneous nephrolithotomy (PCNL) between flank position and prone position for the treatment of renal stones.
Methods: PubMed, Embase, OVID, and Cochrane Library were comprehensively searched from their inception to Jul 2024. Randomized and nonrandomized trials evaluating renal calculi patients who underwent PCNL via flank position or prone position were included.
ACS Appl Mater Interfaces
June 2021
We report for the first time using zinc hydroxyfluoride (ZnOHF) for efficient NO gas detection. The prepared ZnOHF had a unique flower-like architecture self-assembled by nanorods with a diameter of 150 nm and length of 2-3 μm. The sensing performance toward NO detection indicated that the prepared ZnOHF exhibited high response (82.
View Article and Find Full Text PDFSupramolecular polymers have the combined properties of both traditional polymers and supramolecules. They are generally formed via the self-assembled polymerization driven noncovalent interactions such as hydrogen bonding, π-π stacking, metal coordination, and host-guest interaction between building blocks. The driving force for the formation of supramolecular polymers has changed from single noncovalent interactions to multiple noncovalent interactions.
View Article and Find Full Text PDFA novel composite film of hydroquinone/resorcinol-based poly(arylene ether nitrile) (HQ/RS-PEN) improved by bisphenol A based poly(arylene ether nitrile) (BPA-PEN) was prepared, in which BPA-PEN acts as a plasticizer, leading to improved fluidity of the material, thereby favoring the crystallinity of HQ/RS-PEN. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and mechanical and rheological tests have shown that the composites exhibited outstanding thermal and mechanical properties as well as improved fluidity and processing applicability compared with HQ/RS-PEN. At the same time, the crystallization of the poly(arylene ether nitrile) blends with 5 wt % BPA-PEN could be promoted under both static and shear flow fields.
View Article and Find Full Text PDFIn this paper, barium titanate@zinc phthalocyanine (BT@ZnPc) and graphene oxide (GO) hybrids (BT@ZnPc-GO) connected by calcium ions are prepared by electrostatic adsorption, and then introduced into polyarylene ether nitrile (PEN) to obtain composites with enhanced dielectric and crystallization properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results confirm the successful fabrication of the BT@ZnPc-GO. BT@ZnPc-GO and PEN composites (BT@ZnPc-GO/PENs) are obtained through the solution-casting method.
View Article and Find Full Text PDFExcellent thermal resistance and thermal conductivity are preconditions of materials to be used at elevated temperatures. Herein, boron nitride and polyarylene ether nitrile hybrids (PEN-g-BN) with excellent thermal resistance and thermal conductivity are fabricated. Phthalonitrile-modified BN (BN-CN) is prepared by reacting hydroxylated BN with isophorone diisocyanate (IPDI) and 3-aminophxylphthalonitrile (3-APN), and then characterized by FT-IR, UV-Vis, and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFEnhanced dielectric and mechanical properties of polyarylene ether nitrile (PEN) are obtained through secondary dispersion of polyaniline functionalized barium titanate (PANI--BT) by hot-stretching. PANI--BT nanoparticles with different PANI content are successfully prepared via in-situ aniline polymerization technology. The transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopic instrument (XPS) and Thermogravimetric analysis (TGA) results confirm that the PANI layers uniformly enclose on the surface of BaTiO nanoparticles.
View Article and Find Full Text PDFA novel phthalonitrile-terminated polyaryl ether nitrile (PEN-Ph) was synthesized and characterized. The crystallization behavior coexisting with the crosslinking behavior in the PEN-Ph system was confirmed by rheological measurements. DSC was applied to study the crystallization kinetics and crosslinking reaction kinetics.
View Article and Find Full Text PDFThe core-shell structured polyaniline--BaTiO₃ (BT@PANI) nanoparticles with controllable shell layer thicknesses are developed via in-situ aniline polymerization technology and characterized in detail. The results prove that the PANI shell layer with the adjustable and controllable thicknesses of 3⁻10 nm are completely stabilized on the surface of the BaTiO₃ core. In addition, the BT@PANI nanoparticles are regarded as the hybrid nanofillers to prepare PEN/BT@PANI nanocomposite films with a PEN matrix.
View Article and Find Full Text PDFA series of polymers containing nunchaku-like unit with an azo chromophore and a mesogen group was successfully prepared and photoinduced anisotropy of the obtained polymers was minutely investigated. Firstly, monomers containing nunchaku-like unit with an azo chromophore and a mesogen group linked by flexible group were synthesized. The structure of the monomers was confirmed via NMR COSY spectra.
View Article and Find Full Text PDFBarium titanate (BT) and polyarylene ether nitrile (PEN) nanocomposites with enhanced dielectric properties were obtained by using carboxylatedzinc phthalocyanine (ZnPc-COOH) buffer as the plasticizer. Carboxylated zinc phthalocyanine, prepared through hydrolyzing ZnPc in NaOH solution, reacted with the hydroxyl groups on the peripheral of hydrogen peroxide treated BT (BT-OH) yielding core-shell structured BT@ZnPc. Thermogravimetric analysis (TGA), transmission electron microscopy (TEM), TEM energy dispersive spectrometer mapping, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) demonstrated successful preparation of BT@ZnPc.
View Article and Find Full Text PDFChem Commun (Camb)
February 2019
Conductive Nb12O29 hierarchical microspheres with nanosheet shells were synthesized based on a hydrothermal process and a high-temperature hydrogen reduction treatment. The obtained materials demonstrated comprehensively good electrochemical properties, including a significant pseudocapacitive contribution, safe operating potential, high reversible capacity, superior initial coulombic efficiency, increased rate capability, and durable cycling stability.
View Article and Find Full Text PDFChemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H . Electrocatalysts are key materials in the SPE water electrolysis.
View Article and Find Full Text PDFMulti-walled carbon nanotube (MWCNT) filled with poly(arylene ether nitrile) (PEN) (PEN-in-MWCNT) is used as additive to improve the physical performances of PEN matrix. The influences of PEN-in-MWCNT on the crystallization, mechanical, dielectric and thermal properties of PEN are investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier Transform Infrared Spectoscopy (FT-IR), dielectric testing, mechanical testing and scanning electron microscope (SEM) observation. The filling of the PEN into the MWCNT is confirmed by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) observation, FT-IR spectra, TGA and DSC curves.
View Article and Find Full Text PDFWe report the fabrication and improved properties of crosslinked polyarylene ether nitrile (CPEN) interpenetrating with a zinc ion bridged graphene sheet (GS) and carbon nanotube (CNT) network (GS-Zn-CNT) (CPEN/GS-Zn-CNT). Graphene oxide (GO) and acidulated CNT were firstly prepared and then coordinated with zinc ions to form the zinc ion bridged GO and CNT network (GO-Zn-CNT). The mass ratio of GO and acidulated CNT in GO-Zn-CNT was controlled to be 1:3 and the optimized content of Zn was Zn/C = 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2017
Highly ordered nitrogen-doped graphene multilayer films with large interlayer void are successfully fabricated by thermal annealing of the compact stacking graphene oxide/copper phthalocyanine (GO/CuPc) multilayer films. Scanning electron microscopic (SEM), X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopic (XPS), and electrical conductivity measurements indicate that the breakaway of oxygen functional groups on/in the GO sheets at high temperature and the in situ pyrolysis of CuPc molecules in the interlayer of graphene sheets synergistically facilitate the restoration of GO in graphitization, the effective nitrogen doping by replacing carbon atoms in graphene frameworks, the retention of layer-by-layer stacking structure of graphene sheets in plane, and the formation of interlayer voids, leading to the enhancement in the electrical conductivity (3.64 × 10 S/m).
View Article and Find Full Text PDFDielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% decomposition temperature over 520 °C and a glass transition temperature (T) around 386 °C.
View Article and Find Full Text PDFObjective: (18)F-Fluorodeoxyglucose ((18)F-FDG), (18)F-fluoro-3'-deoxy-3'-L-fluorothymidine ((18)F-FLT), (18)F-fluoromisonidazole ((18)F-FMISO), and (18)F-AlF-NOTA-PRGD2 ((18)F-RGD) are all commonly used PET tracers for tumor diagnosis based on different mechanisms of tissue uptake. This study compared the ex-vivo biodistribution and PET/computed tomography (CT) imaging studies of these four PET tracers in a xenograft prostate tumor-bearing mouse model.
Materials And Methods: Nude mice were inoculated with 5 × 10 PC-3 cells in the right armpit.
Macromol Rapid Commun
September 2014
Nematic liquid crystalline elastomer (LCE) microactuators are developed, showing simultaneous thermomechanical deformation and photoluminescence (PL) emission variation functions. The microactuators are prepared by a method combining soft-lithography and photo-polymerization/crosslinking. 1,4-Bis(α-cyano-4-methoxystyryl)benzene as the PL dye is synthesized, characterized, and introduced into LCEs as a dopant in the preparation process.
View Article and Find Full Text PDFIt is now well established that topological microstructures play a key role in the physical properties of surfaces. Stimulus-induced variations of topological microstructure should therefore lead to a change in the physical properties of microstructured responsive surfaces. In this paper, we demonstrate that roughness changes alter the wetting properties of responsive organic surfaces.
View Article and Find Full Text PDFMacromol Rapid Commun
February 2013
A new approach is developed to fabricate highly oriented mono-domain LCE nano/microstructures through micro-molding in capillaries. Gratings and microwires as two typical examples are fabricated and characterized by polarizing optical microscopy, optical microscopy, and scanning electron microscopy. The gratings with precisely controlled sizes and smooth surface are obtained by filling the channels with a nematic monomer mixture followed by the photo-crosslinking.
View Article and Find Full Text PDFChem Commun (Camb)
January 2012
This communication reports a new approach to synthesize amphiphilic block copolymers. The copolymers with well-defined structures were synthesized by macromolecular azo-coupling reaction between the diazonium salt of aniline-functionalized PEG and the polymeric blocks with a terminal suitable for the azo-coupling reaction.
View Article and Find Full Text PDF