The objective of this study was to investigate the effect of temperature changes during heat-moisture treatment (HMT) on the appearance, structure and digestibility of sweet potato starch (SPS). The results showed that after HMT, there were depressions, cavities and fragments on the surface of SPS particles. The polarized crosses of SPS were irregular and partially blurred.
View Article and Find Full Text PDFThe objective of this research was to compare the fermentability of three resistant starches (RS2, RS3, and RS5). Structural analyses showed that there were small changes in the long- and short-range ordered structure of three RSs after fermentation by human gut microbiota. The fermentation of RSs by gut microbiota produced large amounts of short-chain fatty acids, with RS5 producing more butyric acid and RS3 producing more lactic acid.
View Article and Find Full Text PDFTea polyphenols (TP) possess the ability to regulate dyslipidemia and gut microbiota dysbiosis. However, the underlying mechanism is still elusive. The present study explored the intervention of TP on high fat diet induced metabolic disorders, gut microbiota dysbiosis in mice, and the underlying intestinal mechanism.
View Article and Find Full Text PDFThe effects of cooking and storage on the structure and in vitro enzymatic digestibility of complexes formed between fatty acids and debranched high-amylose starch (DHA7-FA) were investigated for the first time. Cooking greatly decreased the crystallinities of DHA7-lauric acid (LA) and DHA7-myristic acid (MA) complexes but had little effect on the crystallinities of DHA7-palmitic acid (PA) and DHA7-stearic acid (SA) complexes. Cooking increased the enthalpy-change (Δ H) values and short-range molecular orders of DHA7-FA complexes.
View Article and Find Full Text PDFCrude laccase extracted from the Amillariella mellea fermentation broth was directly used to catalyze the degradation of 2,4-chlorophenol (2,4-DCP) and 2-chlorophenol (2-CP). The effects of reaction time, pH, temperature, chlorophenol concentration, and laccase dosage on the removal efficiency of chlorophenols were investigated. Optimal catalytic conditions for the degradation of chlorophenols were obtained and the degradation kinetics were analyzed.
View Article and Find Full Text PDF