Autophagy is a catabolic process whereby cytoplasmic components are degraded within lysosomes, allowing cells to maintain energy homeostasis during nutrient depletion. Several studies reported that the CDK inhibitor p27 promotes starvation-induced autophagy by an unknown mechanism. Here we find that p27 controls autophagy via an mTORC1-dependent mechanism in amino acid-deprived cells.
View Article and Find Full Text PDFDiscovery of protein modification sites relies on protein digestion by proteases and mass spectrometry (MS) identification of the modified peptides. Depending on proteases used and target protein sequence, this method yields highly variable coverage of modification sites. We introduce PTMselect, a digestion-simulating software which tailors the optimal set of proteases for discovery of global or targeted modification from any single or multiple proteins.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
November 2018
Cytokinesis begins in anaphase with the formation of the central spindle. PRC1 is a microtubule associated protein that plays an essential role in central spindle formation by crosslinking antiparallel microtubules. We have identified PRC1 as a novel binding partner for p27 (p27).
View Article and Find Full Text PDFThe cell cycle inhibitor p27 is a tumor suppressor via the inhibition of CDK complexes in the nucleus. However, p27 also plays other functions in the cell and may acquire oncogenic roles when located in the cytoplasm. Activation of oncogenic pathways such as Ras or PI3K/AKT causes the relocalization of p27 in the cytoplasm, where it can promote tumorigenesis by unclear mechanisms.
View Article and Find Full Text PDFp27 (p27) is a cyclin-CDK inhibitor and negative regulator of cell proliferation. p27 also controls other cellular processes including migration and cytoplasmic p27 can act as an oncogene. Furthermore, cytoplasmic p27 promotes invasion and metastasis, in part by promoting epithelial to mesenchymal transition.
View Article and Find Full Text PDFCytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division.
View Article and Find Full Text PDF