Publications by authors named "Renaud Delannay"

Packings of beads confined in slowly tilted containers with a top free surface are commonly used in laboratory experiments to model natural grain avalanches and better understand and predict critical events from optical measurements of the surface activity. To that aim, after reproducible packing preparations, the present paper focuses on the effects of the surface fabrication, which can be scraped or soft leveled, on both the avalanche stability angle and the dynamic of precursory events for glass beads of 2-mm diameter. A depth effect of a scraping operation is highlighted by considering different packing heights and inclination speeds.

View Article and Find Full Text PDF

We report on direct measurements of the basal force components for granular material flowing down a smooth incline. We investigate granular flows for a large range of inclination angles from θ=13.4^{∘} to 83.

View Article and Find Full Text PDF

Laboratory study of slope stability of granular media remains a challenge for modeling, understanding, and predicting natural hazards, such as avalanches and landslides, precursory signs of which are controlled by numerous physical parameters. The present work focuses on the impact of the humidity, in the range of 40-90%, on the stability of monodisperse dense packings of spherical beads. The beads are in a transparent box that is slowly and continuously tilted and allows simultaneous top and lateral optical measurements of global displacements of grains at the surface, defined as precursors.

View Article and Find Full Text PDF

We study inclined channel flows of sand over a sensor-enabled composite geotextile fabric base that dissipates granular fluctuation energy. We record strain of the fabric along the flow direction with imbedded fiber-optic Bragg gratings, flow velocity on the surface by correlating grain position in successive images, flow thickness with the streamwise shift of an oblique laser light sheet, velocity depth profile through a transparent side wall using a high-speed camera, and overall discharge rate. These independent measurements at inclinations between 33∘ and 37∘ above the angle of repose at 32.

View Article and Find Full Text PDF

Granular flows down inclined channels with smooth boundaries are common in nature and industry. Nevertheless, flat boundaries have been much less investigated than bumpy ones, which are used by most experimental and numerical studies to avoid sliding effects. Using numerical simulations of each grain and of the side walls we recover quantitatively experimental results.

View Article and Find Full Text PDF

Dry liquid foams coarsen like other diphasic systems governed by interfacial energy: gas slowly diffuses across liquid films, resulting in large bubbles growing at the expense of smaller ones which eventually shrink and disappear. A foam scatters light very effectively, preventing direct optical observation of bubble sizes and shapes in large foams. Using high speed x-ray tomography, we have produced 4D movies (i.

View Article and Find Full Text PDF

Recently, Dean and Lefèvre [Phys. Rev. Lett.

View Article and Find Full Text PDF

We used x-ray tomography to characterize the geometry of all bubbles in a liquid foam of average liquid fraction phi(l) approximately 17% and to follow their evolution, measuring the normalized growth rate G=V(-1/3) dV/dt for 7000 bubbles. While G does not depend only on the number of faces of a bubble, its average over f-faced bubbles scales as G(f) approximately f - f(0) for large f's at all times. We discuss the dispersion of G and the influence of V and phi(l) on G.

View Article and Find Full Text PDF

This Letter reports experimental and numerical results on particle dynamics in an out-of-equilibrium granular medium. We observed two distinct types of grain motion: the well known cage motion, during which a grain is always surrounded by the same neighbors, and low probability "jumps," during which a grain moves significantly more relative to the others. These observations are similar to the results obtained for other out-of-equilibrium systems (glasses, colloidal systems, etc.

View Article and Find Full Text PDF

We report on small-angle neutron scattering (SANS) and X-ray scattering (SAXS) investigations of foam films stabilized by sodium dodecyl sulfate. Previous measurements on dry foams (Axelos, M. A.

View Article and Find Full Text PDF

We report the experimental observation of vortex patterns in a vertically tapped granular media. Depending on the tapping acceleration, two behaviors are observed. For high acceleration a convection vortex appears in the whole media, whereas for low acceleration two unstable vortices appear in the upper part of the media and slowly compact the lower part.

View Article and Find Full Text PDF

Granular materials are of substantial importance in many industrial and natural processes, yet their complex behaviours, ranging from mechanical properties of static packing to their dynamics, rheology and instabilities, are still poorly understood. Here we focus on the dynamics of compaction and its 'jamming' phenomena, outlining recent statistical mechanics approaches to describe it and their deep correspondence with thermal systems such as glass formers. In fact, granular media are often presented as ideal systems for studying complex relaxation towards equilibrium.

View Article and Find Full Text PDF

We observed experimentally a new regime for granular flows in an inclined channel with a flow-rate-controlled system. For high flow rates, the flow occurs atop a static granular heap whose angle is considerably higher than those usually exhibited by granular heaps. The properties of such superstable heaps (SSH) are drastically affected by a change in the channel width W.

View Article and Find Full Text PDF

We present an experimental study of two-dimensional dense inclined chute flows consisting of both monodisperse and bidisperse disks. We analyzed the trajectories of the particles within the flow in a steady regime. (i) In monodisperse flows, particles are arranged in layers that are in motion relative to one another, and it is found that the particles have a nonzero probability of being transferred to adjacent layers.

View Article and Find Full Text PDF