The histone variant 2AX (H2AX) is phosphorylated at Serine 139 by the PI3K-like kinase family members ATM, ATR and DNA-PK. Genotoxic stress, such as tumor radio- and chemotherapy, is considered to be the main inducer of phosphorylated H2AX (γH2AX), which forms distinct foci at sites of DNA damage where DNA repair factors accumulate. γH2AX accumulation under severe hypoxic/anoxic (0.
View Article and Find Full Text PDFA mismatch between metabolic demand and oxygen delivery leads to microenvironmental changes in solid tumors. The resulting tumor hypoxia is associated with malignant progression, therapy resistance and poor prognosis. However, the molecular mechanisms underlying therapy resistance in hypoxic tumors are not fully understood.
View Article and Find Full Text PDFThe prolyl-4-hydroxylase domain (PHD) oxygen sensor proteins hydroxylate hypoxia-inducible transcription factor (HIF)-alpha (alpha) subunits, leading to their subsequent ubiquitinylation and degradation. Since oxygen is a necessary cosubstrate, a reduction in oxygen availability (hypoxia) decreases PHD activity and, subsequently, HIF-alpha hydroxylation. Non-hydroxylated HIF-alpha cannot be bound by the ubiquitin ligase von Hippel-Lindau tumor suppressor protein (pVHL), and HIF-alpha proteins thus become stabilized.
View Article and Find Full Text PDFThe heterodimeric hypoxia-inducible transcription factors (HIFs) are central regulators of the response to low oxygenation. HIF-alpha subunits are constitutively expressed but rapidly degraded under normoxic conditions. Oxygen-dependent hydroxylation of two conserved prolyl residues by prolyl-4-hydroxylase domain-containing enzymes (PHDs) targets HIF-alpha for proteasomal destruction.
View Article and Find Full Text PDFProlyl 4-hydroxylase domain (PHD) proteins are oxygen-dependent enzymes that hydroxylate hypoxia-inducible transcription factor (HIF) alpha-subunits, leading to their subsequent ubiquitination and degradation. Paradoxically, the expression of two family members (PHD2 and PHD3) is induced in hypoxic cell culture despite the reduced availability of the oxygen co-substrate, and it has been suggested that they become functionally relevant following re-oxygenation to rapidly terminate the HIF response. Here we show that PHDs are also induced in hypoxic mice in vivo, albeit in a tissue-specific manner.
View Article and Find Full Text PDFThe heterodimeric hypoxia-inducible factor-1 (HIF-1) is involved in key steps of tumor progression and therapy resistance and thus represents an attractive antitumor target. Because heat shock protein 90 (HSP90) plays an important role in HIF-1alpha protein stabilization and because HSP90 inhibitors are currently being tested in clinical phase I trials for anticancer treatment, we investigated their role as anti-HIF-1alpha agents. Surprisingly, low-dose (5-30 nmol/L) treatment of HeLa cells with three different HSP90 inhibitors (17-AAG, 17-DMAG, and geldanamycin) increased HIF-1-dependent reporter gene activity, whereas higher doses (1-3 micromol/L) resulted in a reduction of hypoxia-induced HIF-1 activity.
View Article and Find Full Text PDFHydrolysis of N-benzyloxycarbonyl-3,4-epoxy-pyrrolidine and cyclohexene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200, respectively, gave the corresponding vicinal trans-diols in high ee and yield, representing the first example of enantioselective hydrolysis of a meso-epoxide with a bacterial epoxide hydrolase.
View Article and Find Full Text PDF