Photoelectrochemical (PEC) water oxidation using ternary oxide systems has been considered a promising approach for investigating the effective utilization of sunlight and the production of green fuel. Herein, we report a ternary-oxide-based CuWO/BiVO/FeCoO film deposited entirely by RF-magnetron sputtering using homemade ceramic targets. Our CuWO/BiVO photoanode exhibits a significant photocurrent density of 0.
View Article and Find Full Text PDFControlling the selectivity of CO hydrogenation catalysts is a fundamental challenge. In this study, the selectivity of supported Ni catalysts prepared by the traditional impregnation method was found to change after a first CO hydrogenation reaction cycle from 100 to 800 °C. The usually high CH formation was suppressed leading to full selectivity toward CO.
View Article and Find Full Text PDFPerovskite strontium titanate is a promising functional material for gas sensors and catalysis applications. Herein, we report the preparation of SrTi1-xCuxO3 nanoparticles with Cu doped in the B sites using a modified polymeric precursor method. This study describes in detail the structural and local atomic configurations for the substitution of Cu into the titanium sites and its reducibility using X-ray diffraction (XRD), field emission gun scanning and transmission electron microscopies (FEG-SEM and TEM), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) analyses.
View Article and Find Full Text PDFMonoclinic Ta3N5 thin films were synthesized by thermal nitridation of amorphous Ta2O5 films directly sputtered by radio frequency magnetron sputtering. The samples were studied by high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis-NIR spectrophotometry, rietveld refinements, spectroscopic ellipsometry and electrochemical techniques. The surface composition of Ta3N5 thin film was found to be different than the underlying film, affecting the optical properties of the material.
View Article and Find Full Text PDFCopper catalysts are very promising, affordable alternatives for noble metals in CO oxidation; however, the nature of the active species remains unclear and differs throughout previous reports. Here, we report the preparation of 8 nm copper nanoparticles (Cu NPs), with high metallic content, directly deposited onto the surface of silica nanopowders by magnetron sputtering deposition. The as-prepared Cu/SiO2 contains 85% Cu0 and 15% Cu2+ and was enriched in the Cu0 phase by H2 soft pretreatment (96% Cu0 and 4% Cu2+) or further oxidized after treatment with O2 (33% Cu0 and 67% Cu2+).
View Article and Find Full Text PDFFreestanding Ta2O5 nanotubes were prepared by an anodizing method. As-anodized amorphous nanotubes were calcined at high temperature to obtain a crystalline phase. All materials were studied by means of BET analysis, XRD, TEM, SEM, XPS, and FTIR and were evaluated in the catalytic oxidation of CO.
View Article and Find Full Text PDFThe production of hydrogen from water using only a catalyst and solar energy is one of the most challenging and promising outlets for the generation of clean and renewable energy. Semiconductor photocatalysts for solar hydrogen production by water photolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers capable of harvesting light photons with adequate potential to reduce water. Here, we show that α-Fe₂O₃ can meet these requirements by means of using hydrothermally prepared nanorings.
View Article and Find Full Text PDF