Publications by authors named "Renato Ostuni"

Reversing CD8 T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8 T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS.

View Article and Find Full Text PDF

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1 state.

View Article and Find Full Text PDF

Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC, but their diversity has prevented therapeutic exploitation.

View Article and Find Full Text PDF

Liver metastases are associated with poor response to current pharmacological treatments, including immunotherapy. We describe a lentiviral vector (LV) platform to selectively engineer liver macrophages, including Kupffer cells and tumor-associated macrophages (TAMs), to deliver type I interferon (IFNα) to liver metastases. Gene-based IFNα delivery delays the growth of colorectal and pancreatic ductal adenocarcinoma liver metastases in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Neutrophils, a type of immune cell, were thought to be kind of rigid, but researchers found out they can actually do many different things based on the situation.
  • Scientists studied neutrophils from healthy people and patients under stress to see how they change and respond to different challenges, like infections and cancer.
  • Understanding how neutrophils adapt could help doctors find new ways to diagnose and treat diseases better.
View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and lethal brain tumor characterized by a strongly immunosuppressive tumor microenvironment (TME) that represents a barrier also for the development of effective immunotherapies. The possibility to revert this hostile TME by immunoactivating cytokines is hampered by the severe toxicity associated with their systemic administration. Here, we exploited a lentiviral vector-based platform to engineer hematopoietic stem cells ex vivo with the aim of releasing, via their tumor-infiltrating monocyte/macrophage progeny, interferon-α (IFN-α) or interleukin-12 (IL-12) at the tumor site with spatial and temporal selectivity.

View Article and Find Full Text PDF

In this issue of Immunity, Eisenstein, Hiliard, et al., uncover a novel mechanism of some widely used non-steroidal anti-inflammatory drugs (NSAIDs): activation of the antioxidant transcription factor NRF2 in myeloid immune cells.

View Article and Find Full Text PDF

Aberrant induction of type I IFN is a hallmark of the inherited encephalopathy Aicardi-Goutières syndrome (AGS), but the mechanisms triggering disease in the human central nervous system (CNS) remain elusive. Here, we generated human models of AGS using genetically modified and patient-derived pluripotent stem cells harboring TREX1 or RNASEH2B loss-of-function alleles. Genome-wide transcriptomic analysis reveals that spontaneous proinflammatory activation in AGS astrocytes initiates signaling cascades impacting multiple CNS cell subsets analyzed at the single-cell level.

View Article and Find Full Text PDF

T cell receptor (TCR)-based therapy has the potential to induce durable clinical responses in patients with cancer by targeting intracellular tumor antigens with high sensitivity and by promoting T cell survival. However, the need for TCRs specific for shared oncogenic antigens and the need for manufacturing protocols able to redirect T cell specificity while preserving T cell fitness remain limiting factors. By longitudinal monitoring of T cell functionality and dynamics in 15 healthy donors, we isolated 19 TCRs specific for Wilms' tumor antigen 1 (WT1), which is overexpressed by several tumor types.

View Article and Find Full Text PDF

Tight control of inflammatory gene expression by antagonistic environmental cues is key to ensure immune protection while preventing tissue damage. Prostaglandin E (PGE) modulates macrophage activation during homeostasis and disease, but the underlying mechanisms remain incompletely characterized. Here we dissected the genomic properties of lipopolysaccharide (LPS)-induced genes whose expression is antagonized by PGE.

View Article and Find Full Text PDF

The transcription factors (TFs) that regulate inducible genes in activated neutrophils are not yet completely characterized. Herein, we show that the genomic distribution of the histone modification H3K27Ac, as well as PU.1 and C/EBPβ, two myeloid-lineage-determining TFs (LDTFs), significantly changes in human neutrophils treated with R848, a ligand of Toll-like receptor 8 (TLR8).

View Article and Find Full Text PDF

Acquisition of cell-associated tumor antigens by type 1 dendritic cells (cDC1) is essential to induce and sustain tumor specific CD8 T cells via cross-presentation. Here we show that capture and engulfment of cell associated antigens by tissue resident lung cDC1 is inhibited during progression of mouse lung tumors. Mechanistically, loss of phagocytosis is linked to tumor-mediated downregulation of the phosphatidylserine receptor TIM4, that is highly expressed in normal lung resident cDC1.

View Article and Find Full Text PDF

Most, if not all, aspects of carcinogenesis are influenced by the tumor microenvironment (TME), a complex architecture of cells, matrix components, soluble signals, and their dynamic interactions in the context of physical traits of the tissue. Expanding application of technologies for high-dimensional analyses with single-cell resolution has begun to decipher the contributions of the immune system to cancer progression and its implications for therapy. In this review, we will discuss the multifaceted roles of tumor-associated macrophages and neutrophils, focusing on factors that subvert tissue immune homeostasis and offer therapeutic opportunities for TME reprogramming.

View Article and Find Full Text PDF

Classically considered short-lived and purely defensive leukocytes, neutrophils are unique in their fast and moldable response to stimulation. This plastic behavior may underlie variable and even antagonistic functions during inflammation or cancer, yet the full spectrum of neutrophil properties as they enter healthy tissues remains unexplored. Using a new model to track neutrophil fates, we found short but variable lifetimes across multiple tissues.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSC) include immature monocytic (M-MDSC) and granulocytic (PMN-MDSC) cells that share the ability to suppress adaptive immunity and to hinder the effectiveness of anticancer treatments. Of note, in response to IFNγ, M-MDSCs release the tumor-promoting and immunosuppressive molecule nitric oxide (NO), whereas macrophages largely express antitumor properties. Investigating these opposing activities, we found that tumor-derived prostaglandin E2 (PGE2) induces nuclear accumulation of p50 NF-κB in M-MDSCs, diverting their response to IFNγ toward NO-mediated immunosuppression and reducing TNFα expression.

View Article and Find Full Text PDF
Article Synopsis
  • CD8 T cells can respond differently to hepatitis B, either becoming dysfunctional or differentiating into effective cells, but the reasons for these varied responses are not well understood.
  • Research shows that when Kupffer cells prime CD8 T cells, they develop into immotile effector cells forming clusters in the liver; however, priming by hepatocytes leads to activated but not differentiated cells, resulting in motile clusters.
  • Analysis reveals that the dysfunctional CD8 T cells primed by hepatocytes have distinct characteristics and do not respond to anti-PD-L1 treatment, but can be stimulated with IL-2, suggesting new immunotherapy approaches for chronic hepatitis B.
View Article and Find Full Text PDF

Adaptation is the ability of cells, tissues and organisms to rapidly and reversibly modify their properties to maximize fitness in a changing environment. The activity of immune-system components unfolds in the remarkably heterogeneous milieus to which they are exposed in different tissues, during homeostasis or during various acute or chronic pathological states. Therefore, adaptation is essential for immune cells to tune their responses to a large variety of contexts and conditions.

View Article and Find Full Text PDF

Transplantation of hematopoietic cells from a healthy individual (allogeneic hematopoietic cell transplantation (allo-HCT)) demonstrates that adoptive immunotherapy can cure blood cancers: still, post-transplantation relapses remain frequent. To explain their drivers, we analyzed the genomic and gene expression profiles of acute myeloid leukemia (AML) blasts purified from patients at serial time-points during their disease history. We identified a transcriptional signature specific for post-transplantation relapses and highly enriched in immune-related processes, including T cell costimulation and antigen presentation.

View Article and Find Full Text PDF

Structured models of ontogenic, phenotypic and functional diversity have been instrumental for a renewed understanding of the biology of immune cells, such as macrophages and lymphoid cells. However, there are no established models that can be used to define the diversity of neutrophils, the most abundant myeloid cells. This lack of an established model is largely due to the uniquely short lives of neutrophils, a consequence of their inability to divide once terminally differentiated, which has been perceived as a roadblock to functional diversity.

View Article and Find Full Text PDF

Immunotherapy is emerging as a new pillar of cancer treatment with potential to cure. However, many patients still fail to respond to these therapies. Among the underlying factors, an immunosuppressive tumor microenvironment (TME) plays a major role.

View Article and Find Full Text PDF

In the clinic, chimeric antigen receptor-modified T (CAR T) cell therapy is frequently associated with life-threatening cytokine-release syndrome (CRS) and neurotoxicity. Understanding the nature of these pathologies and developing treatments for them are hampered by the lack of appropriate animal models. Herein, we describe a mouse model recapitulating key features of CRS and neurotoxicity.

View Article and Find Full Text PDF

Stimulation of macrophages with interferon-γ (IFN-γ) and interleukin 4 (IL-4) triggers distinct and opposing activation programs. During mixed infections or cancer, macrophages are often exposed to both cytokines, but how these two programs influence each other remains unclear. We found that IFN-γ and IL-4 mutually inhibited the epigenomic and transcriptional changes induced by each cytokine alone.

View Article and Find Full Text PDF

Antibodies are critical for protection against viral infections. However, several viruses, such as lymphocytic choriomeningitis virus (LCMV), avoid the induction of early protective antibody responses by poorly understood mechanisms. Here we analyzed the spatiotemporal dynamics of B cell activation to show that, upon subcutaneous infection, LCMV-specific B cells readily relocate to the interfollicular and T cell areas of the draining lymph node where they extensively interact with CD11bLy6C inflammatory monocytes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session36ar7lr7cr6fqg5pjh6lp7k2jqg9akm8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once