Multipath interference (MPI) in bend-insensitive optical fibers is investigated by analyzing different aspects, ranging from a review of the theoretical background, through the analysis of measurement issues, to the characterization of short patch cords. Two setups for the characterization of MPI are analyzed, highlighting their advantages and limitations. Then, a number of commercial bend-insensitive fibers are compared, showing that they generally exhibit a level below -30 dB in the range of 1250-1350 nm.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2004
We report on a detailed theoretical and experimental investigation of film-loaded surface acoustic wave (SAW) waveguides in lithium niobate (LiNbO3) for integrated acousto-optical (AO) polarization converters. The numerical analysis is based on both a scalar and a full-vectorial model. Dispersion plots and figures of merit for several structures are given, which lead to design parameters for optimized polarization converters.
View Article and Find Full Text PDFIntegrated acousto-optical circuits in LiNbO3 are attractive devices for applications especially in advanced WDM systems. In order to increase the scale of integration and to reduce the RF driving power of these devices, one promising approach is to use acoustical waveguides with smaller lateral dimensions. In this paper the combination of a pseudospectral elements method (PSEM) and an effective index method (EIM) for the analysis of film-loaded surface acoustic waveguides (SAWG's) is presented.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2002
Surface acoustic wave (SAW) interdigital transducers are key components in X-Y LiNbO3 acousto-optical (A-O) devices. SAW interdigital transducers (IDT's) on this substrate exhibit a high spurious resonance that may reduce the A-O efficiency. In this paper we present a detailed analysis of X-Y LiNbO3 IDT's based on a fast Green's function method (GFM).
View Article and Find Full Text PDFElectromagnetic wave propagation in anisotropic inhomogeneous media is computed by a novel reduced-order model technique, which is based on the restriction of the Marcuvitz-Schwinger equations on Krylov subspaces and on the application of the singular-value decomposition. The model is derived from the standard coupled-wave method and includes both wide-angle diffraction and light scattering at dielectric interfaces. The method, currently implemented for two-dimensional problems, was applied to the analysis of different liquid-crystal test cells.
View Article and Find Full Text PDF