Publications by authors named "Renato M P Alves"

Less than a third of patients with acute myeloid leukemia (AML) are cured by chemotherapy and/or hematopoietic stem cell transplantation, highlighting the need to develop more efficient drugs. The low efficacy of standard treatments is associated with inadequate depletion of CD34+ blasts and leukemic stem cells, the latter a drug-resistant subpopulation of leukemia cells characterized by the CD34+CD38- phenotype. To target these drug-resistant primitive leukemic cells better, we have designed a CD34/CD3 bi-specific T-cell engager (BTE) and characterized its anti-leukemia potential in vitro, ex vivo and in vivo.

View Article and Find Full Text PDF

Neuronal excitability is a highly demanding process that requires high amounts of energy and needs to be exquisitely regulated. For this reason, brain cells display active energy metabolism to support their activity. Independently of their roles as energy substrates, compelling evidence shows that the nature of the fuels that neurons use contribute to fine-tune neuronal excitability.

View Article and Find Full Text PDF

The impairment of salivary glands activity is often connected to the complaints of dry-mouth and subsequent degradation of the periodontium of diabetic patients. In this context, submandibular glands (SMGs) play a central role in saliva production and so the understanding of the molecular pathways affected is of paramount importance. Using a streptozotocin-induced hyperglycemia rat model and two different time points (2 and 4 months), we applied mass spectrometry-based proteomic techniques, validated with standard western blot analysis, to identify and quantify the effect of chronic hyperglycemia on the proteome of SMGs.

View Article and Find Full Text PDF

Hyperglycaemia-related mitochondrial impairment is suggested as a contributor to skeletal muscle dysfunction. Aiming a better understanding of the molecular mechanisms that underlie mitochondrial dysfunction in type 1 diabetic skeletal muscle, the role of the protein quality control system in mitochondria functionality was studied in intermyofibrillar mitochondria that were isolated from gastrocnemius muscle of streptozotocin (STZ)-induced diabetic rats. Hyperglycaemic rats showed more mitochondria but with lower ATP production ability, which was related with increased carbonylated protein levels and lower mitochondrial proteolytic activity assessed by zymography.

View Article and Find Full Text PDF

Subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria exhibit unique biochemical and functional properties; however, their association with structural membrane proteins that control mitochondrial morphology and functionality in striated muscle tissue was never reported. In IMF and SS mitochondria isolated from rat heart and gastrocnemius muscle, we analysed the expression levels of mitofilin, a mitochondria-associated protein involved in organelle structure maintenance. The statistically significant higher amounts of mitofilin detected in IMF compared with SS mitochondria, 37-fold in cardiac tissue and 3.

View Article and Find Full Text PDF

This study investigated the influence of lifestyle on aging-related changes in cardiac proteins' oxidative modifications profile. Thirty C57BL/6 strain mice (2 months) were randomly divided into three groups (young Y, old sedentary S, and old active A). The S and A mice were individually placed into standard cages and in cages with running wheels, respectively, for 23 months.

View Article and Find Full Text PDF

Biomedical sciences, and in particular biomarker research, demand efficient glycoprotein enrichment platforms. Herein magnetic nanoprobes (MNP), after being coated with three broad-spectrum lectins-concanavalin A (ConA), wheat germ agglutinin (WGA), and Maackia amurensis lectin (MA)-were utilized to selectively capture glycoproteins from human body fluids. Additionally, a new methodology, based on protection of the lectins with their target sugars prior to coupling with MNPs, was proposed to overcome the nonspecific nature of conjugation.

View Article and Find Full Text PDF

In cardiac tissue two mitochondria subpopulations, the subsarcolemmal and the intermyofibrillar mitochondria, present different functional emphasis, although limited information exists about the underlying molecular mechanisms. Our study evidenced higher OXPHOS activity of intermyofibrillar compared to subsarcolemmal mitochondria, paralleled by distinct membrane proteins susceptibility to oxidative damage and not to quantitative differences of OXPHOS composition. Indeed, subsarcolemmal subunits of respiratory chain complexes were more prone to carbonylation while intermyofibrillar mitochondria were more susceptible to nitration.

View Article and Find Full Text PDF

Skeletal muscle is a highly specialized tissue that contains two distinct mitochondria subpopulations, the subsarcolemmal (SS) and the intermyofibrillar (IMF) mitochondria. Although it is established that these mitochondrial subpopulations differ functionally in several ways, limited information exists about the proteomic differences underlying these functional differences. Therefore, the objective of this study was to biochemically characterize the SS and IMF mitochondria isolated from rat red gastrocnemius skeletal muscle.

View Article and Find Full Text PDF

The aim of this study was to investigate the influence of lifestyle on the aging alterations in skeletal muscle mitochondrial proteins. Thirty C57BL/6 strain mice (2 months) were randomly divided into three groups (young, Y; old sedentary, S; and old active, A). The S and A mice were individually placed into standard cages and in cages with running wheels for 25 months.

View Article and Find Full Text PDF