In plants, the perception of cell wall fragments initiates signal transduction cascades that activate the immune response. Previous research on early protein dynamics induced by oligogalacturonides (OGs), pectin fragments acting as damage-associated molecular patterns (DAMPs), revealed significant phosphorylation changes in several proteins. Among them, the subunit C of the vacuolar H-ATPase, known as DE-ETIOLATED 3 (DET3), was selected to elucidate its role in the OG-triggered immune response.
View Article and Find Full Text PDFPolyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a gene family has been carried out in .
View Article and Find Full Text PDFThe Arabidopsis gene (At4g14940) encodes an apoplastic copper amine oxidase (CuAO) highly expressed in guard cells of leaves and flowers and in root vascular tissues, especially in protoxylem and metaxylem precursors, where its expression is strongly induced by the wound signal methyl jasmonate (MeJA). The hydrogen peroxide (HO) derived by the AtCuAOβ-driven oxidation of the substrate putrescine (Put), mediates the MeJA-induced early root protoxylem differentiation. Considering that early root protoxylem maturation was also induced by both exogenous Put and leaf wounding through a signaling pathway involving HO, in the present study we investigated the role of in the leaf wounding-induced early protoxylem differentiation in combination with Put treatment.
View Article and Find Full Text PDFCopper-containing amine oxidases (CuAOs) catalyze polyamines (PAs) terminal oxidation producing ammonium, an aminoaldehyde and hydrogen peroxide (HO). Plant CuAOs are induced by stress-related hormones, methyl-jasmonate (MeJA), abscisic acid (ABA) and salicylic acid (SA). In the Arabidopsis genome, eight genes encoding CuAOs have been identified.
View Article and Find Full Text PDFPlant copper amine oxidases (CuAOs) are involved in wound healing, defense against pathogens, methyl-jasmonate-induced protoxylem differentiation, and abscisic acid (ABA)-induced stomatal closure. In the present study, we investigated the role of the CuAOδ (AtCuAOδ; At4g12290) in the ABA-mediated stomatal closure by genetic and pharmacological approaches. Obtained data show that is up-regulated by ABA and that two T-DNA insertional mutants are less responsive to this hormone, showing reduced ABA-mediated stomatal closure and HO accumulation in guard cells as compared to the wild-type (WT) plants.
View Article and Find Full Text PDFPlants (Basel)
December 2018
Root architecture and xylem phenotypic plasticity influence crop productivity by affecting water and nutrient uptake, especially under those environmental stress, which limit water supply or imply excessive water losses. Xylem maturation depends on coordinated events of cell wall lignification and developmental programmed cell death (PCD), which could both be triggered by developmental- and/or stress-driven hydrogen peroxide (H₂O₂) production. Here, the effect of wounding of the cotyledonary leaf on root protoxylem maturation was explored in by analysis under Laser Scanning Confocal Microscope (LSCM).
View Article and Find Full Text PDFCopper amine oxidases oxidize the polyamine putrescine to 4-aminobutanal with the production of the plant signal molecule hydrogen peroxide (H2O2) and ammonia. The Arabidopsis (Arabidopsis thaliana) gene At4g14940 (AtAO1, previously referred to as ATAO1) encodes an apoplastic copper amine oxidase expressed in lateral root cap cells and developing xylem, especially in root protoxylem and metaxylem precursors. In our recent study, we demonstrated that AtAO1 expression is strongly induced in the root vascular tissues by the wound-signal hormone methyl jasmonate (MeJA).
View Article and Find Full Text PDFPolyamines are involved in key developmental processes and stress responses. Copper amine oxidases oxidize the polyamine putrescine (Put), producing an aldehyde, ammonia, and hydrogen peroxide (H2O2). The Arabidopsis (Arabidopsis thaliana) amine oxidase gene At4g14940 (AtAO1) encodes an apoplastic copper amine oxidase expressed at the early stages of vascular tissue differentiation in roots.
View Article and Find Full Text PDFPolyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs).
View Article and Find Full Text PDFSaporins are type 1 ribosome-inactivating proteins (RIPs: EC 3.2.2.
View Article and Find Full Text PDF