Publications by authors named "Renato A Bauer"

Acyl azetidines exhibit nonplanar hybridization, leading to lower amide-like character of the corresponding (O)C-N bonds. This impacts N-acryloyl azetidines by producing enhanced electrophilicy at appended Michael acceptors. Herein, reactivity data are reported in the presence of glutathione (GSH) in phosphate buffer (pH 7.

View Article and Find Full Text PDF

Drugs that covalently bond to their biological targets have a long history in drug discovery. A look at drug approvals in recent years suggests that covalent drugs will continue to make impacts on human health for years to come. Although fraught with concerns about toxicity, the high potencies and prolonged effects achievable with covalent drugs may result in less-frequent drug dosing and in wide therapeutic margins for patients.

View Article and Find Full Text PDF

Principal component analysis (PCA) is a useful tool in the design and planning of chemical libraries. PCA can be used to reveal differences in structural and physicochemical parameters between various classes of compounds by displaying them in a convenient graphical format. Herein, we demonstrate the use of PCA to gain insight into structural features that differentiate natural products, synthetic drugs, natural product-like libraries, and drug-like libraries, and show how the results can be used to guide library design.

View Article and Find Full Text PDF

Nature has exploited medium-sized 8- to 11-membered rings in a variety of natural products to address diverse and challenging biological targets. However, owing to the limitations of conventional cyclization-based approaches to medium-ring synthesis, these structures remain severely underrepresented in current probe and drug discovery efforts. To address this problem, we have established an alternative, biomimetic ring expansion approach to the diversity-oriented synthesis of medium-ring libraries.

View Article and Find Full Text PDF

Alkaloid and terpenoid natural products display an extensive array of chemical frameworks and biological activities. However such scaffolds remain underrepresented in current screening collections and are, thus, attractive targets for the synthesis of natural product-based libraries that access underexploited regions of chemical space. Recently, we reported a systematic approach to the stereoselective synthesis of multiple alkaloid/terpenoid-like scaffolds using transition metal-mediated cycloaddition and cyclization reactions of enyne and diyne substrates assembled on a tert-butylsulfinamide lynchpin.

View Article and Find Full Text PDF

A unified synthetic approach to diverse polycyclic scaffolds has been developed using transition-metal-mediated cycloaddition and cyclization reactions of enynes and diynes. The tert-butylsulfinamide group has been identified as a particularly versatile lynchpin in these reactions, with a reactivity profile uniquely suited for efficient, stereoselective substrate synthesis and downstream transformations. This approach provides 10 distinct, functionalized scaffold classes related to common core structures in alkaloid and terpenoid natural products.

View Article and Find Full Text PDF

Existing drugs address a relatively narrow range of biological targets. As a result, libraries of drug-like molecules have proven ineffective against a variety of challenging targets, such as protein-protein interactions, nucleic acid complexes, and antibacterial modalities. In contrast, natural products are known to be effective at modulating such targets, and new libraries are being developed based on underrepresented scaffolds and regions of chemical space associated with natural products.

View Article and Find Full Text PDF