Publications by authors named "Renate W Boekhoven"

Knowledge of the intrinsic material properties of healthy and diseased arterial tissue components is of great importance in diagnostics. This study describes an in vitro comparison of 13 porcine carotid arteries using inflation testing combined with functional ultrasound and bi-axial tensile testing. The measured tissue behavior was described using both a linear, but geometrically non-linear, one-parameter (neo-Hookean) model and a two-parameter non-linear (Demiray) model.

View Article and Find Full Text PDF

To improve our understanding of the mechanical behavior of human atherosclerotic plaque tissue, fully 3-D geometrical, morphological and dynamical information is essential. For this purpose, four-dimensional (3-D+t) strain imaging using an ultrasound tomography approach (echo-computed tomography) was performed in carotid arteries in vitro. The method was applied to a carotid phantom (CPh), a porcine carotid artery (PC) and human carotid atherosclerotic plaque samples (HC, n = 5).

View Article and Find Full Text PDF

In this study, an experimental framework is described that allows pressurization of intact, human atherosclerotic carotid samples (inflation testing), in combination with ultrasound imaging. Eight fresh human carotid endarterectomy samples were successfully pressurized and tested. About 36 2-D (+t) ultrasound datasets were acquired by rotating the vessel in 10° steps (Echo-CT), from which both 3-D geometry and 3-D strain data were obtained.

View Article and Find Full Text PDF

To improve diagnosis and understanding of the risk of rupture of atherosclerotic plaque, new strategies to realistically determine mechanical properties of atherosclerotic plaque need to be developed. In this study, an in vitro experimental method is proposed for accurate 3-D assessment of (diseased) vessel geometry using ultrasound. The method was applied to a vascular phantom, a healthy porcine carotid artery and human carotid endarterectomy specimens (n = 6).

View Article and Find Full Text PDF

Tumor-associated inflammation has been recognized as an important tumor growth propagator and, therefore, represents an attractive target for anti-cancer therapy. In the current study, inspired by recent findings on the anti-tumor activity of liposomal glucocorticoids, we introduce paramagnetic and fluorescent liposomes, encapsulating prednisolone phosphate (PLP), to evaluate the local delivery of liposomal glucocorticoids to the tumor and its importance for the therapeutic response. The new multifunctional liposomes (Gd-PLP-L) (120nm diameter, 5.

View Article and Find Full Text PDF