Publications by authors named "Renate Viebahn-Haensler"

Our hypothesis that controlled ozone applications interfere with the redox balance of a biological organism (first published in 1998 with a preclinical trial on protecting the liver from CCl intoxication) has been verified over the past two decades in reactive oxygen species (ROS)-induced mitochondrial pathologies, such as rheumatoid arthritis, osteoarthritis, aging processes and type 2 diabetes, and in the prevention of intoxications. Low-dose ozone acts as a redox bioregulator: the restoration of the disturbed redox balance is comprehensible in a number of preclinical and clinical studies by a remarkable increase in the antioxidant repair markers, here mainly shown as a glutathione increase and a reduction in oxidative stress markers, mainly malondialdehyde. The mechanism of action is shown, and relevant data are displayed, evaluated and comprehensively discussed: the repair side of the equilibrium increases by 21% up to 140% compared to the non-ozone-treated groups and depending on the indication, the stress markers are simultaneously reduced, and the redox system regains its balance.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) and osteoarthritis (OA) are the most common arthritic diseases. Medical ozone has demonstrated its effectiveness in combination therapy with methotrexate or non-steroidal anti-inflammatory drugs for RA and OA, respectively. Although RA and OA have been compared from different points of view, few studies have considered their redox status in spite of the oxidative processes that are involved in both diseases.

View Article and Find Full Text PDF

The best form of prevention against human infection through bacteria, viruses, and other parasites is ozone disinfection of wastewater and drinking water as a highly effective, well-known method. Various preclinical studies showed promising results, which are being revisited and reconsidered in times of pandemics and led to interesting results in recent clinical trials and reports, as presented by the example of protective measures against COVID-19 in particularly vulnerable clinical personnel. The application of ozone in the form of the low-dose concept induces its regulation by interference of ozone or its peroxides into the redox equilibrium of the biological system, which finally results in the restoration of the glutathione equilibrium.

View Article and Find Full Text PDF

Low-dose ozone acts as a bioregulator in chronic inflammatory diseases, biochemically characterized by high oxidative stress and a blocked regulation. During systemic applications, "Ozone peroxides" are able to replace HO in its specific function of regulation, restore redox signaling, and improve the antioxidant capacity. Two different mechanisms have to be understood.

View Article and Find Full Text PDF

Medical ozone reduced inflammation, IL-1β, TNF-α mRNA levels and oxidative stress in PG/PS-induced arthritis in rats. The aim of this study was to investigate the medical ozone effects in patients with rheumatoid arthritis treated with methotrexate and methotrexate+ozone, and to compare between them. A randomized clinical study with 60 patients was performed, who were divided into two groups: one (n=30) treated with methotrexate (MTX), folic acid and Ibuprophen (MTX group) and the second group (n=30) received the same as the MTX group+medical ozone by rectal insufflation of the gas (MTX+ozone group).

View Article and Find Full Text PDF