Tumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells.
View Article and Find Full Text PDFA hallmark of glioblastoma is the high level of aerobic glycolysis. PFKFB3 and PFKFB4 are regulatory glycolytic enzymes, which are overexpressed in glioblastomas. Selective inhibition of these enzymes has emerged as a new approach in tumor therapy.
View Article and Find Full Text PDFGenes Chromosomes Cancer
December 2011
Loss of heterozygosity (LOH) on chromosome arm 10p is very common in high-grade gliomas and is, among others, concentrated on the region 10p14-p15. Presence of multiple tumor suppressor genes is assumed, but until now only Krüpple-like transcription factor 6 (KLF6) has been suggested as possible target of LOH in this region. On the basis of the fact that the splice variant 4 (UBI2K4) of the PFKFB3 gene, located in 10p15.
View Article and Find Full Text PDFThe bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) controls the glycolytic flux via the allosteric activator fructose 2,6-bisphosphate. Because of its proto-oncogenic character, the PFK-2/FBPase-2 of the PFKFB3 gene is assumed to play a critical role in tumorigenesis. We investigated the PFKFB3 expression in 40 human astrocytic gliomas and 20 non-neoplastic brain tissue specimens.
View Article and Find Full Text PDFN-terminal acetylation in the yeast Saccharomyces cerevisiae is catalysed by any of three N-terminal acetyltransferases (NAT), NatA, NatB, and NatC, which contain the catalytic subunits Ard1p, Nat3p and Mak3p, respectively. Yeast 6-phosphofructo-2-kinase (PFK2) was found to be acetylated at the amino acid lysine 3. The Lys3-Arg mutant was not acetylated and the mutation causes a slight decrease in enzyme activity.
View Article and Find Full Text PDFIn response to changes in the environment, yeast cells coordinate intracellular activities to optimize survival and proliferation. The transductions of diverse extracellular stimuli are exerted through multiple mitogen-activated protein kinase (MAPK) cascades. The high osmolarity glycerol (HOG) MAPK pathway is activated by increased environmental osmolarity and results in a rise of the cellular glycerol concentration to adapt the intracellular osmotic pressure.
View Article and Find Full Text PDFYeast cells respond to changes of the environment by complex modifications of the metabolism. An increase of the extracellular glucose concentration activates the Ras-cAMP pathway. Via a production of cAMP this pathway stimulates the cAMP-dependent protein kinase (PKA) which is involved in the posttranslational regulation of the key enzymes of gluconeogenesis and glycolysis.
View Article and Find Full Text PDF