Plant Environ Interact
December 2024
This study examined the growth parameters of both glyphosate-susceptible and glyphosate-resistant biotypes of , designated as GA2005 and GA2017, respectively. A two-year microplot field study was conducted to assess their growth characteristics. Scheduled destructive harvests on named harvest days (HD) were conducted to collect measurements for further calculation of net assimilation rate (NAR; g m day), specific leaf area (SLA), leaf weight ratio (LWR), stem-to-leaf ratio (SLR), leaf area index (LAI), leaf area ratio (LAR; cm g), leaf area duration (LAD; days), relative growth rate (RGR; g.
View Article and Find Full Text PDFThe weeds are important in agricultural and livestock areas because these plants can cause several damages, especially in the yield. The herbicide pulverization for weed control is the most used, but the efficiency of the control can be dependent the several factors, for example, the correct chose the herbicide and the mixture or not with adjuvant. This study aimed to evaluate the contact angle of herbicide solution droplets associated with adjuvant when deposited on the leaf surface of different weed species and their relationship with chemical control.
View Article and Find Full Text PDFIn order to understand the physiological effects of ripeners in sensitive crops, the objective of this work was to evaluate the effect of subdoses of the ripeners glyphosate, trinexapac-ethyl and sulfometuron methyl commonly used in sugarcane, in the growth of lettuce cultivar 'Lucy Brown' and 'Vanda'. To address the effects of the products in the lettuce physiology, analyses of fresh weight, dry weight, number of leaves, chlorophyll content, quantum efficiency of photosystem II, lipid peroxidation (MDA), hydrogen peroxide (HO), glutathione reductase (GR), guaiacol peroxidase (GPOX) were performed. We observed that among the products tested, glyphosate had minor impact on plant growth, compared to trinexapac-ethyl and sulfometuron methyl.
View Article and Find Full Text PDFBacillus thuringiensis (Bt) is the main bacterium used in the formulation of bioinsecticides because it produces toxins and spores that are toxic to several orders of insects. The efficacy of Bt bioinsecticide is influenced by the quality of its application. The association with other crop protection products, such as adjuvants, can affect the physical and chemical parameters of the mixture.
View Article and Find Full Text PDF