Publications by authors named "Renata Szczepaniak"

Article Synopsis
  • PML protein is crucial for how cells respond to oxidative stress, but its specific mechanism is not well understood.
  • Researchers found that the B-box1 domain of PML is more sensitive to oxidative changes compared to the RING domain.
  • This sensitivity enhances PML's ability to form nuclear bodies in cells, indicating B-box1 is a key player in detecting oxidative stress.
View Article and Find Full Text PDF

Endometriosis is a disease whose underlying cause is the growth of the endometrium outside the uterine cavity. The disease is characterised by unpleasant pain in the pelvic region, irrespective of the phase of the woman's cycle. Physiotherapy in its various forms can be an excellent complement to the gynaecological treatment of endometriosis, by virtue of reducing inflammation, alleviating pain and thus significantly improving women's quality of life.

View Article and Find Full Text PDF

The majority of drug discovery efforts against herpesviruses have focused on nucleoside analogs that target viral DNA polymerases, agents that are associated with dose-limiting toxicity and/or a narrow spectrum of activity. We are pursuing a strategy based on targeting two-metal ion-dependent (TMID) viral enzymes. This family of enzymes consists of structurally related proteins that share common active sites containing conserved carboxylates predicted to coordinate divalent cations essential for catalysis.

View Article and Find Full Text PDF

The herpes simplex virus (HSV) type I alkaline nuclease, UL12, has 5'-to-3' exonuclease activity and shares homology with nucleases from other members of the family. We previously reported that a UL12-null virus exhibits a severe defect in viral growth. To determine whether the growth defect was a result of loss of nuclease activity or another function of UL12, we introduced an exonuclease-inactivating mutation into the viral genome.

View Article and Find Full Text PDF

Unlabelled: During DNA encapsidation, herpes simplex virus 1 (HSV-1) procapsids are converted to DNA-containing capsids by a process involving activation of the viral protease, expulsion of the scaffold proteins, and the uptake of viral DNA. Encapsidation requires six minor capsid proteins (UL6, UL15, UL17, UL25, UL28, and UL33) and one viral protein, UL32, not found to be associated with capsids. Although functions have been assigned to each of the minor capsid proteins, the role of UL32 in encapsidation has remained a mystery.

View Article and Find Full Text PDF

Disulfide bonds reportedly stabilize the capsids of several viruses, including papillomavirus, polyomavirus, and simian virus 40, and have been detected in herpes simplex virus (HSV) capsids. In this study, we show that in mature HSV-1 virions, capsid proteins VP5, VP23, VP19C, UL17, and UL25 participate in covalent cross-links, and that these are susceptible to dithiothreitol (DTT). In addition, several tegument proteins were found in high-molecular-weight complexes, including VP22, UL36, and UL37.

View Article and Find Full Text PDF

The herpes simplex virus 1 (HSV-1) UL6 portal protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for the encapsidation of the viral genome. We have demonstrated previously that the leucine zipper region of UL6 is important for intersubunit interactions and stable ring formation (J. K.

View Article and Find Full Text PDF

The herpes simplex virus type 1 UL6 protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for encapsidation of the viral genome. To characterize UL6 protein domains that are involved in intersubunit interactions and interactions with other capsid proteins, we engineered a set of deletion mutants spanning the entire gene. Three deletion constructs, D-5 (Delta 198-295), D-6 (Delta 322-416), and D-LZ (Delta 409-473, in which a putative leucine zipper was removed), were introduced into the viral genome.

View Article and Find Full Text PDF