The pathophysiology of systemic lupus erythematosus (SLE) has been very well described in many organs. However, the relation between extracellular matrix changes and lung dynamic mechanical behaviour deserves elucidation. To that end, pulmonary mechanics, lung morphometry and the amount of collagen and elastic fibres in the alveolar septa were analysed in mice with SLE [NZB/W (New Zealand Black/White) F1] and non-diseased NZW mice (control).
View Article and Find Full Text PDFRespir Physiol Neurobiol
August 2003
To develop a reproducible model of atelectasis, 15 mechanically ventilated Wistar rats were wrapped around the thorax/abdomen with a sphygmomanometer. The cuff was inflated to transpulmonary pressures (PL) of -4 cmH2O (group A) and -8 cmH2O (group B) for 5 sec. Group C was not compressed.
View Article and Find Full Text PDFIn vivo (lung resistive and viscoelastic pressures and static elastance) and in vitro (tissue resistance, elastance, and hysteresivity) respiratory mechanics were analyzed 1 and 30 days after saline (control) or paraquat (P [10 and 25 mg/kg intraperitoneally]) injection in rats. Additionally, P10 and P25 were treated with methylprednisolone (2 mg/kg intravenously) at 1 or 6 hours after acute lung injury (ALI) induction. Collagen and elastic fibers were quantified.
View Article and Find Full Text PDF