The ability of superabsorbent polymers (SAP) in drying maize and controlling aflatoxin contamination was studied under different temperatures, drying times and SAP-to-maize ratios. Temperature and drying time showed significant influence on the aflatoxin formation. SAP-to-maize ratios between 1:1 and 1:5 showed little or no aflatoxin contamination after drying to the optimal moisture content (MC) of 13 %, while for ratios 1:10 and 1:20, aflatoxin contamination was not well controlled due to the overall higher MC and drying time, which made these ratios unsuitable for the drying process.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2016
While stimuli-responsive polymers have received a huge amount of attention in the literature, responsive lipid-based mesophase systems offer unique opportunities in biomedical applications such as drug delivery and biosensing. The different mesophase equilibrium structures enables dynamic switching between nanostructures to facilitate drug release or as a transducer for recognition events. In drug delivery, this behavior offers researchers the means to deliver a therapeutic payload at a specific rate and time i.
View Article and Find Full Text PDFA weak amphiphilic base, pyridinylmethyl linoleate, is blended with monolinolein, yielding mesophases with a pH-induced hexagonal-to-cubic transition at pH ≤ 5.5. We show the potential therapeutic role of this mesophase in treating cancerous tissues exploiting their more acidic pH compared to healthy tissues.
View Article and Find Full Text PDFThe release of positive, negative, and neutral hydrophilic drugs from pH responsive bicontinuous cubic phases was investigated under varying conditions of electrostatic interactions. A weak acid, linoleic acid (LA), or a weak base, pyridinylmethyl linoleate (PML), were added to the neutral monolinolein (ML) in order to form lyotropic liquid-crystalline (LLC) phases, which are negatively charged at neutral pH and positively charged at acidic pH. Release studies at low ionic strength (I = 20 mM) and at different pH values (3 and 7) revealed that electrostatic attraction between a positive drug, proflavine (PF), and the negatively charged LLC at pH = 7 or between a negative drug, antraquinone 2-sulfonic acid sodium salt (AQ2S), and the positively charged LLC at pH = 3 did delay the release behavior, while electrostatic repulsion affects the transport properties only to some extent.
View Article and Find Full Text PDFMembrane proteins have been reconstituted on lipid bilayers with zero mean-curvature (cubic phases or vesicles). Here we show that reconstitution of pore-forming membrane proteins can also occur on highly curved lipidic bilayers of reverse hexagonal mesophases, for which the mean-curvature is significantly different from zero. We further show that the membrane protein provides unique topological interconnectivities between the aqueous nanochannels, significantly enhancing mesophase transport properties.
View Article and Find Full Text PDFLipidic lyotropic liquid crystals are at the frontline of current research for release of target therapeutic molecules due to their unique structural complexity and the possibility of engineering stimuli-triggered release of both hydrophilic and hydrophobic molecules. One of the most suitable lipidic mesophases for the encapsulation and delivery of drugs is the reversed double diamond bicontinuous cubic phase, in which two distinct and parallel networks of ∼4 nm water channels percolate independently through the lipid bilayers, following a Pn3m space group symmetry. In the unperturbed Pn3m structure, the two sets of channels act as autonomous and non-communicating 3D transport pathways.
View Article and Find Full Text PDFWe present a new strategy to control the anisotropic diffusion of hydrophilic drugs in lyotropic liquid crystals via the dispersion of magnetic nanoparticles in the mesophase, followed by reorientation of the mesophase domains via an external magnetic field. We select a lipid reverse hexagonal phase doped with magnetic iron oxide nanoparticles and glucose and caffeine as model hybrid mesophase and hydrophilic drugs, respectively. Upon cooling through the disorder-order phase transition of the hexagonal phase and under exposure to an external moderate magnetic field (1.
View Article and Find Full Text PDFLyotropic liquid crystals characterized by a bicontinuous cubic phase (BCP) have a structure characterized by interpenetrated water channels following triply periodic minimal surfaces, which can be stable in excess water conditions and thus suitable in a multitude of applications. The control of the water channels size in these systems has a direct impact on their use for drug delivery, crystallization, and membrane separation processes. In this work we carry out systematic diffusion studies to show how the control on the water channel dimensions directly correlates with the release and separation performance of bicontinuous cubic phases.
View Article and Find Full Text PDFWe present a food-grade lyotropic liquid crystal system, capable of responding to pH variations with a reversible switch in both the structure and physical properties. The system, which is composed by monolinolein and linoleic acid (97:3 wt % ratio) in the presence of excess water at 37 °C and 150 mM ionic strength, is specifically designed to reversibly change from a Im3m reverse bicontinuous cubic phase to a H(II) reverse columnar hexagonal phase, when changing the pH from neutral (pH 7) to acidic (pH 2) conditions, to simulate intestine and stomach conditions, respectively. The pH responsiveness is provided by the linoleic acid, which, being a weak acid (pK(a) ≈ 5), is essentially in the deprotonated charged state at pH 7 and mainly protonated and neutral at pH 2, imposing changes in the critical packing parameter (CPP) of the lyotropic liquid crystal.
View Article and Find Full Text PDF