IEEE Trans Pattern Anal Mach Intell
November 2023
Millions of papers are submitted and published every year, but researchers often do not have much information about the journals that interest them. In this paper, we introduced the first dynamical clustering algorithm for symbolic polygonal data and this was applied to build scientific journals profiles. Dynamic clustering algorithms are a family of iterative two-step relocation algorithms involving the construction of clusters at each iteration and the identification of a suitable representation or prototype (means, axes, probability laws, groups of elements, etc.
View Article and Find Full Text PDFInterval-valued data have been commonly encountered in practice, and Symbolic Data Analysis provides a solution to the statistical treatment of these data. Regression analysis for interval-valued symbolic data is a topic that has been widely investigated in the literature of symbolic data analysis, and several models from different paradigms have been proposed. There are basic regression assumptions, and it is essential to validate them.
View Article and Find Full Text PDFBreast cancer is one of the leading causes of death in women. Because of this, thermographic images have received a refocus for diagnosing this cancer type. This work proposes an innovative approach to classify breast abnormalities (malignant, benignant and cyst), employing interval temperature data in order to detect breast cancer.
View Article and Find Full Text PDFSome complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains.
View Article and Find Full Text PDF