Publications by authors named "Renata Lopes Rosa"

In the realm of intelligent healthcare, there is a growing ambition to reshape medical services through the integration of artificial intelligence (AI). However, conventional machine learning faces inherent challenges such as privacy issues, delayed updates, and protracted training times, particularly due to the hesitance of medical institutions to directly share sensitive data, with possible noises. In response to these concerns, a Quantum-Assisted Federated Intelligent Diagnosis Algorithm ( -QuAFIDA) is proposed, applied into real medical data.

View Article and Find Full Text PDF

Following the recent advances in wireless communication leading to increased Internet of Things (IoT) systems, many security threats are currently ravaging IoT systems, causing harm to information. Considering the vast application areas of IoT systems, ensuring that cyberattacks are holistically detected to avoid harm is paramount. Machine learning (ML) algorithms have demonstrated high capacity in helping to mitigate attacks on IoT devices and other edge systems with reasonable accuracy.

View Article and Find Full Text PDF

A quality monitoring system for telecommunication services is relevant for network operators because it can help to improve users' quality-of-experience (QoE). In this context, this article proposes a quality monitoring system, named Q-Meter, whose main objective is to improve subscriber complaint detection about telecommunication services using online-social-networks (OSNs). The complaint is detected by sentiment analysis performed by a deep learning algorithm, and the subscriber's geographical location is extracted to evaluate the signal strength.

View Article and Find Full Text PDF

The routing algorithm is one of the main factors that directly impact on network performance. However, conventional routing algorithms do not consider the network data history, for instances, overloaded paths or equipment faults. It is expected that routing algorithms based on machine learning present advantages using that network data.

View Article and Find Full Text PDF

Minimizing human intervention in engines, such as traffic lights, through automatic applications and sensors has been the focus of many studies. Thus, Deep Learning (DL) algorithms have been studied for traffic signs and vehicle identification in an urban traffic context. However, there is a lack of priority vehicle classification algorithms with high accuracy, fast processing, and a lightweight solution.

View Article and Find Full Text PDF

People use Online Social Networks (OSNs) to express their opinions and feelings about many topics. Depending on the nature of an event and its dissemination rate in OSNs, and considering specific regions, the users' behavior can drastically change over a specific period of time. In this context, this work aims to propose an event detection system at the early stages of an event based on changes in the users' behavior in an OSN.

View Article and Find Full Text PDF