This review focuses on the expression and function of voltage-gated sodium channel subtype Na1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented.
View Article and Find Full Text PDFThyroid cancer is the most common endocrine cancer, with differentiated thyroid cancers (DTCs) accounting for 95% of diagnoses. While most DTC patients are diagnosed and treated with radioiodine (RAI), up to 20% of DTC patients become RAI refractory (RAI-R). RAI-R patients have significantly reduced survival rates compared to patients who remain RAI-avid.
View Article and Find Full Text PDFBackground: Of the half a million cases of thyroid cancer diagnosed annually, 95% are differentiated thyroid cancers. Although clinical guidelines recommend surgical resection followed by radioactive iodine ablation, loss of sodium-iodine symporter expression causes up to 20% of differentiated thyroid cancers to become radioactive iodine refractory. For patients with radioactive iodine refractory disease, there is an urgent need for new diagnostic and therapeutic approaches.
View Article and Find Full Text PDFSomatostatin receptor type 2 (SSTR2) and thyroid-stimulating hormone receptor (TSHR) display variable expression in primary thyroid tumors and have been implicated as theranostic targets. This study was designed to explore the differential expression of SSTR2 and TSHR in oncocytic (Hurthle cell) carcinoma (OC) vs oncocytic adenoma (OA). We performed a retrospective review for oncocytic neoplasms treated at our institution from 2012 to 2019.
View Article and Find Full Text PDFMechanistic modeling of cancers such as Medullary Thyroid Carcinoma (MTC) to emulate patient-specific phenotypes is challenging. The discovery of potential diagnostic markers and druggable targets in MTC urgently requires clinically relevant animal models. Here we established orthotopic mouse models of MTC driven by aberrantly active Cdk5 using cell-specific promoters.
View Article and Find Full Text PDFOur results from quantitative RT-PCR, Western blotting, immunohistochemistry, and the tissue microarray of medullary thyroid cancer (MTC) cell lines and patient specimens confirm that VGSC subtype Na1.7 is uniquely expressed in aggressive MTC and not expressed in normal thyroid cells and tissues. We establish the druggability of Na1.
View Article and Find Full Text PDFThe cross talk between cancer cells and endothelial cells (ECs) within the tumor microenvironment plays a critical role in tumor progression, recurrence, and cancer stemness. Here, we present a protocol containing two in vitro approaches to study such interactions. We first describe an indirect co-culture system to study the regulation of stemness markers in cancer cells by secreted factors from ECs.
View Article and Find Full Text PDFPancreatic neuroendocrine tumors (pNETs) are extremely diverse and highly vascularized neoplasms that arise from endocrine cells in the pancreas. The pNETs harbor a subpopulation of stem cell-like malignant cells, known as cancer stem cells (CSCs), which contribute to intratumoral heterogeneity and promote tumor maintenance and recurrence. In this study, we demonstrate that CSCs in human pNETs co-express protein kinase PKD1 and CD44.
View Article and Find Full Text PDFGrowth factors in tumor environments are regulators of cell survival and metastasis. Here, we reveal the dichotomy between TGF-β superfamily growth factors BMP and TGF-β/activin and their downstream SMAD effectors. Gene expression profiling uncovers SOX2 as a key contextual signaling node regulated in an opposing manner by BMP2, -4, and -9 and TGF-β and activin A to impact anchorage-independent cell survival.
View Article and Find Full Text PDFThe Notch pathway regulates many cellular functions in a context-dependent manner. Depending on the cell type, either the activation or inhibition of Notch signaling can influence many processes such as cellular proliferation, specification, differentiation, and survival. The activation of Notch signaling has been shown to have therapeutic advantages in some cancers, thus having a method to identify Notch-activating compounds is needed.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2022
Few models exist for studying neuroendocrine tumors (NETs), and there are mounting concerns that the currently available array of cell lines is not representative of NET biology. The lack of stable patient-derived NET xenograft models further limits the scientific community's ability to make conclusions about NETs and their response to therapy in patients. To address these limitations, we propose the use of an ex vivo 3D flow-perfusion bioreactor system for culturing and studying patient-derived NET surrogates.
View Article and Find Full Text PDFGamma secretase inhibitors (GSIs), initially developed as Alzheimer's therapies, have been repurposed as anticancer agents given their inhibition of Notch receptor cleavage. The success of GSIs in preclinical models has been ascribed to induction of cancer stem-like cell differentiation and apoptosis, while also impairing epithelial-to-mesenchymal transition and sensitizing cells to traditional chemoradiotherapies. The promise of these agents has yet to be realized in the clinic, however, as GSIs have failed to demonstrate clinical benefit in most solid tumors with the notable exceptions of CNS malignancies and desmoid tumors.
View Article and Find Full Text PDFNeuroendocrine (NE) cancers arise from cells within the neuroendocrine system. Chemotherapies and endoradiotherapy have been developed, but their clinical efficacy is limited. The objective of this study was to develop a dual-targeted extracellular vesicles (EV)-delivered combined therapies to treat NE cancer.
View Article and Find Full Text PDFIn an effort to discover viable systemic chemotherapeutic agents for neuroendocrine tumors (NETs), we screened a small library of 18 drug-like compounds obtained from the Velu lab against pulmonary (H727) and thyroid (MZ-CRC-1 and TT) neuroendocrine tumor-derived cell lines. Two potent lead compounds (DHN-II-84 and DHN-III-14) identified from this screening were found to be analogs of the natural product makaluvamine. We further characterized the antitumor activities of these two compounds using pulmonary (H727), thyroid (MZ-CRC-1) and pancreatic (BON) neuroendocrine tumor cell lines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2020
Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses.
View Article and Find Full Text PDFNeuroendocrine (NE) tumors include a diverse spectrum of hormone-secreting neoplasms that arise from the endocrine and nervous systems. Current chemo- and radio-therapies have marginal curative benefits. The goal of this study was to develop an innovative antibody-drug conjugate (ADC) to effectively treat NE tumors (NETs).
View Article and Find Full Text PDFToxicol Appl Pharmacol
August 2020
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are metabolized to carcinogenic dihydrodiol epoxides (PAHDE) by cytochrome P450 1B1 (CYP1B1). This metabolism occurs in bone marrow (BM) mesenchymal stem cells (MSC), which sustain hematopoietic stem and progenitor cells (HSPC). In BM, CYP1B1-mediated metabolism of 7, 12-dimethylbenz[a]anthracene (DMBA) suppresses HSPC colony formation within 6 h, whereas benzo(a)pyrene (BP) generates protective cytokines.
View Article and Find Full Text PDFSurgical resection is the only cure for neuroendocrine tumors (NETs). However, widespread metastases have already occured by the time of initial diagnosis in many cases making complete surgical removal impossible. We developed a recombinant heavy-chain receptor binding domain (rHCR) of botulinum neurotoxin type A that can specifically target synaptic vesicle 2 (SV2), a surface receptor abundantly expressed in multiple neuroendocrine tumors.
View Article and Find Full Text PDFBackground: Neuroendocrine tumors are found throughout the body, including the pancreas. These tumors are phenotypically and genetically heterogeneous and can be difficult to accurately image using current imaging standards. However, positron emission tomography/computed tomography with radiolabeled somatostatin analogs has shown clinical success because many neuroendocrine tumors overexpress somatostatin receptor subtype 2.
View Article and Find Full Text PDFExosomes hold great potential to deliver therapeutic reagents for cancer treatment due to its inherent low antigenicity. However, several technical barriers, such as low productivity and ineffective cancer targeting, need to be overcome before wide clinical applications. The present study aims at creating a new biomanufacturing platform of cancer-targeted exosomes for drug delivery.
View Article and Find Full Text PDFBackground: As patient-derived xenografts and other preclinical models of neuroendocrine tumors for testing personalized therapeutics are lacking, we have developed a perfused, 3D bioreactor model to culture tumor surrogates from patient-derived neuroendocrine tumors. This work evaluates the duration of surrogate culture and surrogate response to a novel antibody-drug conjugate.
Methods: Twenty-seven patient-derived neuroendocrine tumors were cultured.
Pulmonary carcinoids are a type of neuroendocrine tumor (NET) accounting for 1-2% of lung cancer cases. Currently, Positron Emission Tomography (PET)/CT based on the radiolabeled sugar analogue [F]-FDG is used to diagnose and stage pulmonary carcinoids, but is suboptimal due to low metabolic activity in these tumors. A new technique for pulmonary carcinoid imaging, using PET/CT with radiolabeled somatostatin analogs that specifically target somatostatin receptor subtype 2 (SSTR2), is becoming more standard, as many tumors overexpress SSTR2.
View Article and Find Full Text PDFAntibody-drug conjugate (ADC) is a class of targeted cancer therapies that combine the advantages of monoclonal antibody (mAb)'s specific targeting and chemotherapy's potent cytotoxicity. The therapeutic effect of ADC is significantly affected by its bioproduction process. This study aims to develop an effective ADC production process using anti-HER2 mAb-drug as a model therapeutic.
View Article and Find Full Text PDFBackground: Medullary thyroid cancer portends poor survival once liver metastasis occurs. We hypothesize that Notch3 overexpression in medullary thyroid cancer liver metastasis will decrease proliferation and growth of the tumor.
Methods: TT cells were modified genetically to overexpress Notch3 in the presence of doxycycline, creating the TT-Notch3 cell line.