Organic and inorganic soil amendments are used to increase crop yields and fertilizer efficiency, as well as to improve the physical and biological properties of soil, increase carbon sequestration, and restore contaminated and saline soils. The present study aimed to evaluate the effect of various zeolite composites mixed with either lignite or leonardite on the biomass production of spring wheat and rapeseed and their root morphology. A pot experiment involved the application of the following treatments: zeolite-carbon, zeolite-vermiculite composites, both mixed with lignite or leonardite, and a control treatment with no amendments.
View Article and Find Full Text PDFWaste fly ash, with both low (with the addition of vermiculite) and high contents of unburned coal, were subjected to hydrothermal syntheses aiming to obtain zeolite composite materials-zeolite + vermiculite (NaX-Ver) and zeolite + unburned carbon (NaX-C). The composites were compared with parent zeolite obtained from waste fly ash with a low content of unburned carbon (NaX-FA). In this study, the physicochemical characteristics of the obtained materials were evaluated.
View Article and Find Full Text PDFBackground: Accurate measurement of physical performance in individuals with musculoskeletal pain is essential. Accelerometry is a powerful tool for this purpose, yet the current methods designed to evaluate energy expenditure are not optimized for this population. The goal of this study is to empirically derive a method of accelerometry analysis specifically for musculoskeletal pain populations.
View Article and Find Full Text PDFMed Sci Sports Exerc
February 2015
Objectives: To develop and implement methodologies for characterizing accelerometry-derived patterns of physical activity (PA) in the United States in relation to demographics, anthropometrics, behaviors, and comorbidities using the National Health and Nutrition Examination Survey (NHANES) dataset.
Design: Retrospective analysis of nationally representative database.
Setting: Computer-generated modeling in silico.
Top Spinal Cord Inj Rehabil
July 2013
The management of chronic respiratory insufficiency and/or long-term inability to breathe independently has traditionally been via positive-pressure ventilation through a mechanical ventilator. Although life-sustaining, it is associated with limitations of function, lack of independence, decreased quality of life, sleep disturbance, and increased risk for infections. In addition, its mechanical and electronic complexity requires full understanding of the possible malfunctions by patients and caregivers.
View Article and Find Full Text PDFA recently reported dual LPA(1)/LPA(3) receptor antagonist (1) has been modified so as to modulate the basicity, sterics, and dipole moment of the 2-pyridyl moiety. Additionally, the implications of installing nonhydrolyzable phosphate head group isosteres with regard to antagonist potency and selectivity at LPA receptors is described. This study has resulted in the development of the first nonhydrolyzable and presumably phosphatase-resistant LPA(3)-selective antagonist reported to date.
View Article and Find Full Text PDFUsing an N-oleoyl ethanolamide scaffold, a series of phosphate polar head group analogues of LPA comprised of various alpha-substituted phosphonates and thiophosphates was prepared. In a broken cell GTP[gamma35S] binding assay, agonist activity was evaluated at the three LPA receptors of the endothelial differentiation gene (Edg) family. This study has resulted in the discovery of a nonhydrolyzable LPA1-selective agonist (11).
View Article and Find Full Text PDFA recently reported dual LPA1/LPA3 receptor antagonist (VPC12249, 1) has been modified herein so as to optimize potency and selectivity at LPA receptors. Compounds containing variation in the acyl lipid chain and linker region have been synthesized and screened for activity at individual LPA receptors. LPA1-selective (14b) and LPA3-selective (10g,m) compounds of modest potency have been discovered.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) is a bioactive lysophospholipid mediator that acts through G protein-coupled receptors. Most cell lines in culture express one or more LPA receptors, making it difficult to assign a response to specific LPA receptors. Dissection of the signaling properties of LPA has been hampered by lack of LPA receptor subtype-specific agonists and antagonists.
View Article and Find Full Text PDF