We report on the experimental evidence of thermal terahertz (THz) emission tailored by magnetic polariton (MP) excitations in entirely GaAs-based structures equipped with metasurfaces. The -GaAs/GaAs/TiAu structure was optimized using finite-difference time-domain (FDTD) simulations for the resonant MP excitations in the frequency range below 2 THz. Molecular beam epitaxy was used to grow the GaAs layer on the -GaAs substrate, and a metasurface, comprising periodic TiAu squares, was formed on the top surface using UV laser lithography.
View Article and Find Full Text PDFFabry-Perot laser diodes based on (Al, Ga)As and Ga(As, Bi) with single or multiple parabolic or rectangular-shaped quantum wells (QWs) emitting at the 780-1100 nm spectral range were fabricated and investigated for optimization of the laser QW design and composition of QWs. The laser structures were grown using the molecular beam epitaxy (MBE) technique on the -type GaAs(100) substrate. The photolithography process was performed to fabricate edge-emitting laser bars of 5 μm by 500 μm in size.
View Article and Find Full Text PDFThe distribution of alloyed atoms in semiconductors often deviates from a random distribution which can have significant effects on the properties of the materials. In this study, scanning transmission electron microscopy techniques are employed to analyze the distribution of Bi in several distinctly MBE grown GaAsBi alloys. Statistical quantification of atomic-resolution HAADF images, as well as numerical simulations, are employed to interpret the contrast from Bi-containing columns at atomically abrupt (001) GaAs-GaAsBi interface and the onset of CuPt-type ordering.
View Article and Find Full Text PDFGaAsBi is a suitable and very attractive material system to be used as an active layer in laser diodes (LDs). To understand the performance and the reliability of such devices and also for further laser diode improvements, the origin of noise sources should be clarified. A detailed study of near-infrared 1.
View Article and Find Full Text PDFInGaAs-based bow-tie diodes for the terahertz (THz) range are found to be well suited for development of compact THz imaging systems. To further optimize design for sensitive and broadband THz detection, one of the major challenges remains: to understand the noise origin, influence of growth conditions and role of defects for device operation. We present a detailed study of photoreflectance, low-frequency noise characteristics and THz sensitivity of InGaAs bow-tie diodes.
View Article and Find Full Text PDF