Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan-Killiany parcellation is represented by a $1\,\mathrm{mm^{2}}$ column with a layered structure.
View Article and Find Full Text PDFIn network models of spiking neurons, the joint impact of network structure and synaptic parameters on activity propagation is still an open problem. Here, we use an information-theoretical approach to investigate activity propagation in spiking networks with a hierarchical modular topology. We observe that optimized pairwise information propagation emerges due to the increase of either (i) the global synaptic strength parameter or (ii) the number of modules in the network, while the network size remains constant.
View Article and Find Full Text PDF