On-surface synthesis with designer precursor molecules is considered an effective method for preparing graphene nanoribbons (GNRs) of well-defined widths and with tunable electronic properties. Recent reports have shown that the band gap of ribbons doped with heteroatoms (such as boron, nitrogen, and sulfur) remains unchanged in magnitude in most cases. Nevertheless, theory predicts that a tunable band gap may be engineered by hydrogenation, but experimental evidence for this is so far lacking.
View Article and Find Full Text PDFThe field of molecular electronics aims at advancing the miniaturization of electronic devices, by exploiting single molecules to perform the function of individual components. A molecular switch is defined as a molecule that displays stability in two or more states (e.g.
View Article and Find Full Text PDFThe mechanism of chemical reactions between adsorbed species is defined by the combined effects of the adsorbate-substrate potential landscape and lateral interactions. Such lateral interactions are therefore integral to catalytic processes, but their study is often complicated by "substrate mediation", the regulation of a two-body potential between adsorbed particles by the surface itself. Substrate mediation can influence the sign and magnitude of lateral interactions.
View Article and Find Full Text PDFModern electronic devices perform their defined action because of the complete reliability of their individual active components (transistors, switches, diodes, and so forth). For instance, to encode basic computer units (bits) an electrical switch can be used. The reliability of the switch ensures that the desired outcome (the component's final state, 0 or 1) can be selected with certainty.
View Article and Find Full Text PDFThe synthesis of a hexa-peri-hexabenzocoronene (HBC) with a central borazine core is described. The solid-state structure of this BN-doped HBC (BN-HBC) is isotypic with that of the parent HBC. Scanning tunneling microscopy shows that BN-HBC lies flat on Au(111) in a two-dimensional pattern.
View Article and Find Full Text PDFNickel nanoparticles modified by the adsorption of chiral amino acids are known to be effective enantioselective heterogeneous catalysts. The leaching of nickel by amino acids has a number of potential effects including the induction of chirality in the nickel atoms left behind in the nanoparticle and the creation of catalytically active nickel complexes. The adsorption of (S)-proline onto Au(111) precovered by two-dimensional nickel nanoclusters was investigated by scanning tunneling microscopy, X-ray photoelectron spectroscopy, and high-resolution electron energy loss spectroscopy.
View Article and Find Full Text PDFA dihydro-TTF derivative with four acetyl-protected thiol ligands was synthesised and adsorbed on Au(111) under UHV conditions. Scanning Tunnelling Microscopy (STM) and Infrared (IR) spectroscopy show that self-organised structures are formed following annealing to 333 K, with each pair of bidentate thiolate ligands bonding to a single gold adatom in a S-Auad-S complex. Due to the lack of a direct orbital overlap between the dihydro-TTF moieties and the surface, relatively little charge transfer between TAT-TTF and the gold surface occurs.
View Article and Find Full Text PDFThe adsorption of (S)-proline on Au(111) at 300 K was studied by low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and high resolution electron energy loss spectroscopy. (S)-proline adsorbs to produce a 2-D gas phase at 300 K, which can be condensed to form ordered molecular assemblies on cooling to 77 K. The chemical nature of the self-assembled structures is discussed in light of the information provided by photoelectron and vibrational spectroscopies.
View Article and Find Full Text PDFA potential end-point in the miniaturization of electronic devices lies in the field of molecular electronics, where molecules perform the function of single components. To date, hydrogen tautomerism in unimolecular switches has been restricted to the central macrocycle of porphyrin-type molecules. The present work reveals how H-tautomerism is the mechanism for switching in substituted quinone derivatives, a novel class of molecules with a different chemical structure.
View Article and Find Full Text PDFThe electrodeposition of Pd onto self-assembled monolayers (SAMs) of 3-(4-pyridine-4-ylphenyl)propane-1-thiol on Au(111) has been investigated by scanning tunneling microscopy. Two schemes are compared: One involves an established two-step procedure where Pd(2+) ions are first coordinated to the pyridine moieties and subsequently reduced in Pd(2+)-free electrolyte. The second deposition routine involves electroreduction in an electrolyte containing low concentration of Pd(2+) which merges both steps and, thus, significantly simplifies metal deposition onto pyridine-terminated SAMs.
View Article and Find Full Text PDFThe nucleation and growth mechanisms of graphene on Rh(111) via temperature-programmed growth of C(2)H(4) are studied by scanning tunneling microscopy and spectroscopy, and by density functional theory calculations. By combining our experimental and first-principles approaches, we show that carbon nanoislands form in the initial stages of graphene growth, possessing an exclusive size of seven honeycomb carbon units (hereafter labeled as 7C(6)). These clusters adopt a domelike hexagonal shape indicating that bonding to the substrate is localized on the peripheral C atoms.
View Article and Find Full Text PDFResonance tunneling spectroscopy and density functional theory calculations are employed to explore local variations in the electronic surface potential of a single graphene layer grown on Rh(111). A work function modulation of 220 meV is experimentally measured, indicating that the chemical bonding strength varies significantly across the supercell of the Moiré pattern formed when graphene is bonded to Rh(111). In combination with high-resolution images, which provide precise knowledge of the local atomic registry at the carbon-metal interface, we identify experimentally, and confirm theoretically, the atomic configuration of maximum chemical bonding to the substrate.
View Article and Find Full Text PDFBy means of high-resolution scanning tunneling microscopy (STM), we have revealed unprecedented details about the intermediate steps for a surface-catalyzed reaction. Specifically, we studied the oxidation of H adatoms by O(2) molecules on the rutile TiO(2)(110) surface. O(2) adsorbs and successively reacts with the H adatoms, resulting in the formation of water species.
View Article and Find Full Text PDFDiffusion of oxygen molecules on transition metal oxide surfaces plays a vital role for the understanding of catalysis and photocatalysis on these materials. By means of time-resolved scanning tunneling microscopy, we provide evidence for a charge transfer-induced diffusion mechanism for O2 molecules adsorbed on a rutile TiO2(110) surface. The O2 hopping rate depended on the number of surface donors (oxygen vacancies), which determines the density of conduction band electrons.
View Article and Find Full Text PDFDefects such as oxygen vacancies play a crucial role in the surface properties of transition metal oxides. By means of time-resolved, high-resolution scanning tunneling microscopy, we unraveled an adsorbate-mediated diffusion mechanism of oxygen vacancies on rutile TiO2(110). Adsorbed oxygen molecules mediate vacancy diffusion through the loss of an oxygen atom to a vacancy and the sequential capture of an oxygen atom from a neighboring bridging oxygen row, leading to an anisotropic oxygen vacancy diffusion pathway perpendicular to the bridging oxygen rows.
View Article and Find Full Text PDF