The trihydroxamic acid bacterial siderophore desferrioxamine B (DFOB, 1) produced by the DesABCD biosynthetic cluster coordinates metals beyond Fe(iii), which identifies potential to modify this chelator type to broaden metal sequestration and/or delivery applications. Rather than producing discrete chelators by total chemical synthesis from native monomers including -hydroxy--succinyl-cadaverine (HSC, 2), the recombinant siderophore synthetase from CNB-440 (DesD) was used with different substrate combinations to produce biocombinatorial mixtures of hydroxamic acid chelators. The mixtures were screened with Ga(iii) or Zr(iv) as surrogates of immunological positron emission tomography (PET) imaging radiometals Ga(iii) or Zr(iv) to inform known or new coordination chemistry.
View Article and Find Full Text PDFSince 1976, the Lorne Proteins Conference has been a key gathering for protein scientists, combining cutting-edge research with community engagement in a picturesque corner of the world. Renowned for its diverse international speakers and collaborative spirit, the conference looks forward to its 50 anniversary in 2025.
View Article and Find Full Text PDFThe solute carrier 1A family comprises a group of membrane proteins that act as dual-function amino acid transporters and chloride (Cl) channels and includes the alanine serine cysteine transporters (ASCTs) as well as the excitatory amino acid transporters. ASCT2 is regarded as a promising target for cancer therapy, as it can transport glutamine and other neutral amino acids into cells and is upregulated in a range of solid tumors. The compound L-γ-glutamyl-p-nitroanilide (GPNA) is widely used in studies probing the role of ASCT2 in cancer biology; however, the mechanism by which GPNA inhibits ASCT2 is not entirely clear.
View Article and Find Full Text PDFGlutamate transporters facilitate the removal of this excitatory neurotransmitter from the synapse. Increasing evidence indicates that this process is linked to intrinsic chloride channel activity that is thermodynamically uncoupled from substrate transport. A recent cryo-EM structure of Glt - an archaeal homolog of the glutamate transporters - in an open channel state has shed light on the structural basis for channel opening formed at the interface of two domains within the transporter which is gated by two clusters of hydrophobic residues.
View Article and Find Full Text PDFGlutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). Excitatory amino acid transporters (EAATs) regulate extracellular glutamate by transporting it into cells, mostly glia, to terminate neurotransmission and to avoid neurotoxicity. EAATs are also chloride (Cl-) channels, but the physiological role of Cl- conductance through EAATs is poorly understood.
View Article and Find Full Text PDFBiosynthesis of the hydroxamic acid siderophore desferrioxamine D (DFOD, ), which is the -acetylated analogue of desferrioxamine B (DFOB, ), has been delineated. Enzyme-independent Ac-CoA-mediated -acetylation of produced , in addition to three constitutional isomers containing an N--acetyl group installed at either one of the three hydroxamic acid groups of . The formation of -Ac-DFOB (DFOD, ) and the composite of N--acetylated isomers N--Ac-DFOB[001] (), N--Ac-DFOB[010] (), and N--Ac-DFOB[100] () (defined as the N--Ac motif positioned within the terminal amine, internal, or -acetylated region of , respectively), was pH-dependent, with - dominant at pH < 8.
View Article and Find Full Text PDFParkinson disease (PD) is a progressive, neurodegenerative disorder affecting over 6.1 million people worldwide. Although the cause of PD remains unclear, studies of highly penetrant mutations identified in early-onset familial parkinsonism have contributed to our understanding of the molecular mechanisms underlying disease pathology.
View Article and Find Full Text PDFNeurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways.
View Article and Find Full Text PDFGlutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport.
View Article and Find Full Text PDFThe treatment of chronic pain is poorly managed by current analgesics, and there is a need for new classes of drugs. We recently developed a series of bioactive lipids that inhibit the human glycine transporter GlyT2 (SLC6A5) and provide analgesia in animal models of pain. Here, we have used functional analysis of mutant transporters combined with molecular dynamics simulations of lipid-transporter interactions to understand how these bioactive lipids interact with GlyT2.
View Article and Find Full Text PDFInhibitors that target the glycine transporter 2, GlyT2, show promise as analgesics, but may be limited by their toxicity through complete or irreversible binding. Acyl-glycine inhibitors, however, are selective for GlyT2 and have been shown to provide analgesia in animal models of pain with minimal side effects, but are comparatively weak GlyT2 inhibitors. Here, we modify the simple acyl-glycine by synthesizing lipid analogues with a range of amino acid head groups in both l- and d-configurations, to produce nanomolar affinity, selective GlyT2 inhibitors.
View Article and Find Full Text PDFDual-specificity tyrosine phosphorylation-related kinase 1A (DYRK1A) is a dual-specificity protein kinase that catalyses phosphorylation and autophosphorylation. Higher DYRK1A expression correlates with cancer, in particular glioblastoma present within the brain. We report here the synthesis and biological evaluation of new heterocyclic diphenolic derivatives designed as novel DYRK1A inhibitors.
View Article and Find Full Text PDFCancer cells undergo a shift in metabolism where they become reliant on nutrients such as the amino-acid glutamine. Glutamine enters the cell via the alanine/serine/cysteine transporter 2 (ASCT2) that is upregulated in several cancers to maintain an increased supply of this nutrient and are therefore an attractive target in cancer therapeutic development. ASCT2 belongs to the glutamate transporter (SLC1A) family but is the only transporter in this family able to transport glutamine.
View Article and Find Full Text PDFTransporters in the SLC6 family play key roles in regulating neurotransmission and are the targets for a wide range of therapeutics. Important insights into the transport mechanisms and the specificity of drug interactions of SLC6 transporters have been obtained from the crystal structures of a bacterial homologue of the family, LeuT, and more recently the Drosophila dopamine transporter and the human serotonin transporter. However, there is disputed evidence that the bacterial leucine transporter, LeuT, contains two substrate binding sites that work cooperatively in the mechanism of transport, with the binding of a second substrate being required for the release of the substrate from the primary site.
View Article and Find Full Text PDFACS Chem Neurosci
September 2017
It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2.
View Article and Find Full Text PDFThe DYRK family contains kinases that are up-regulated in malignancy and control several cancer hallmarks. To assess the anticancer potential of inhibitors targeting DYRK kinases, we developed a series of novel DYRK inhibitors based on the 7-azaindole scaffold. All compounds were tested for their ability to inhibit DYRK1A, DYRK1B, DYRK2, and the structurally related CLK1.
View Article and Find Full Text PDFThe hormone insulin coordinates the catabolism of nutrients by protein phosphorylation. Phosphoproteomic analysis identified insulin-responsive phosphorylation of the Glu/Asp transporter SLC1A3/EAAT1 in adipocytes. The role of SLC1A3 in adipocytes is not well-understood.
View Article and Find Full Text PDFCrystal structures of the prokaryotic aspartate transporter, Glt, have provided important insights into the mechanism of amino acid transport by Glt and related eukaryotic members of the glutamate transporter family (SLC1A family). Identification of inhibitors of Glt can provide valuable tools for understanding the molecular basis for substrate and inhibitor specificity and selectivity of SLC1A members, but at present, few inhibitors of Glt have been identified. We have screened a collection of commercially available aspartate analogues and identified new transportable and nontransportable Glt inhibitors.
View Article and Find Full Text PDFThe Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission.
View Article and Find Full Text PDFThe concentration of glutamate within a glutamatergic synapse is tightly regulated by excitatory amino acid transporters (EAATs). In addition to their primary role in clearing extracellular glutamate, the EAATs also possess a thermodynamically uncoupled Cl(-) conductance. This conductance is activated by the binding of substrate and Na(+), but the direction of Cl(-) flux is independent of the rate or direction of substrate transport; thus, the two processes are thermodynamically uncoupled.
View Article and Find Full Text PDF