Publications by authors named "RenLi Liang"

Due to limited land availability in municipal wastewater treatment plants, integrated fixed-film activated sludge (IFAS) technology offers significant advantages in improving nitrogen removal performance and treatment capacity. In this study, two systems, IFAS and Anaerobic-Anoxic-Oxic Activated sludge process (AAO), were compared by adjusting parameters such as hydraulic retention time (HRT), nitrifying solution recycle ratio, sludge recycle ratio, and dissolved oxygen (DO). The objective was to investigate pollutant removal capacity and differences in microbial community composition between the two systems.

View Article and Find Full Text PDF

Enhancing the light extraction efficiency is a prevalent but vital challenge for most solid-state lighting technologies, especially for deep ultraviolet light-emitting diodes (DUV-LEDs). In this paper, inspired by the microstructure of the butterfly's eye, we propose and fabricate a flexible fluoropolymer film (FFP film) to tackle this issue for all-mode, full-wavelength light extraction enhancement for most solid-state lighting technologies compatibly. The experimental results demonstrate that compared with one mounted with a smooth FFP film, the light output power of DUV-LED is enhanced up to 26.

View Article and Find Full Text PDF

Deep ultraviolet light-emitting diodes (DUV-LEDs) have become a promising UV light source for sterilization, disinfection, and purification. However, the challenge in practical application of DUV-LEDs still remains in their low light efficiency. In this paper, we propose an optimized aluminum (Al) reflector for the light extraction enhancement of DUV-LEDs.

View Article and Find Full Text PDF

In this work, combined analysis of internal strain effects on optical polarization and internal quantum efficiency (IQE) were conducted for the first time. Deep ultraviolet light extraction efficiency of AlGaN multiple quantum wells (MQWs) have been investigated by means of polarization-dependent photoluminescence (PD-PL) and temperature-dependent photoluminescence (TD-PL). With the increase of compressive internal strain applied to the MQWs by an underlying n-AlGaN layer, the degree of polarization (DOP) of the sample was improved from -0.

View Article and Find Full Text PDF

The graphene oxide (GO)-based fluoropolymer is first proposed as an interface encapsulant to improve the light extraction efficiency and achieve the ultralong working stability of deep ultraviolet light-emitting diodes (DUV-LEDs), benefitting from its superior interface performance based on an anchored effect. For the GO-based fluoropolymer composite, the anchored structure is designed to effectively and tightly rivet the quartz lens on the DUV-LED chip by using the interface reaction between GO embedded in fluoropolymer and 3-aminopropyltriethoxy-silane grafted on the surfaces. Experimental results show that on the basis of the interface anchored effect, the air voids in the interface layer of DUV-LED are reduced by 84%, leading to an improvement of the light output power by 15% and a decrease of the junction temperature by 5%, by virtue of the sealing characteristics of the 0.

View Article and Find Full Text PDF

In this study, based on silicone composites with graphene oxide (GO) as a filler, a novel packaging strategy was proposed to reduce the interface thermal resistance of surface-mounted ultraviolet light-emitting diodes (UV-LEDs) and provide a potentially effective way for enhancing the long-term stability of devices. The 4 wt % GO-based composite showed an excellent performance in the thermal conductivity, and the interface thermal resistance was reduced by 34% after embedding the 4 wt % GO-based composite into the air gaps of bonding interfaces in the UV-LEDs, leading to a reduction of junction temperature by 1.2 °C under the working current of 1000 mA.

View Article and Find Full Text PDF

We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness.

View Article and Find Full Text PDF

In this study, we investigate the physical and chemical properties of waste-activated sludge after treatment with microwave irradiation. The results indicate that microwave energy and contact time strongly influence the physical and chemical properties of sludge. According to the settling velocity and particle size measurements, the microwave energy of 900 W with a contact time of 60s may be the optimal condition for improving the ability of the sludge to settle.

View Article and Find Full Text PDF