A microfluidic chip, which can separate and enrich leukocytes from whole blood, is proposed. The chip has 10 switchback curve channels, which are connected by straight channels. The straight channels are designed to permit the inertial migration effect and to concentrate the blood cells, while the curve channels allow the Dean flow to further classify the blood cells based on the cell sizes.
View Article and Find Full Text PDFA novel nanocapillary electrophoretic electrochemical (Nano-CEEC) chip has been developed to demonstrate the possibility of zeptomole-level detection of neurotransmitters released from single living cells. The chip integrates three subunits to collect and concentrate scarce neurotransmitters released from single PC-12 cells, including a pair of targeting electrodes for single cells captured by controlling the surface charge density; a dual-asymmetry electrokinetic flow device for sample collection, pre-concentration and separation in a nanochannel; and an online electrochemical detector for zeptomole-level sample detection. This Nano-CEEC chip integrates a polydimethylsiloxane microchannel for cell sampling and biomolecule separation and a silicon dioxide nanochannel for sample pre-concentration and amperometric detection.
View Article and Find Full Text PDFA novel concept for electroosmotic flow (EOF) control in a microfluidic chip is presented by using a self-assembled monolayer as the insulator of a flow field-effect transistor. Bidirectional EOF control with mobility values of 3.4 × 10(-4) and -3.
View Article and Find Full Text PDFIn the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications.
View Article and Find Full Text PDFIn this research, a technique incorporating dual-asymmetry electrokinetic flow (DAEKF) was applied to a nanoCE electrochemical device for the pre-concentration and detection of catecholamines. The DAEKF was constructed by first generating a zeta-potential difference between the top and bottom walls, which had been pre-treated with O2 and H2O surface plasma, respectively, yielding a 2-D gradient shear flow across the channel depth. The shear flow was then exposed to a varying zeta-potential along the downstream direction by control of the field-effect in order to cause downward rotational flow in the channel.
View Article and Find Full Text PDFWe present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions.
View Article and Find Full Text PDFThis article demonstrates that a three-electrode electrochemical (EC) detector and an electric decoupler could be fabricated in the same glass chip and integrated with an O2-plasma-treated PDMS layer using microfabrication techniques to form the capillary electrophoresis (CE) microchip. The platinized decoupler could mostly decouple the electrochemical detection circuit from the interference of an separation electric field in 10 mM 2-(N-morpholino)ethanesulfonic acid (MES, pH 6.5) solution.
View Article and Find Full Text PDF