Atomic force microscopy is used to conduct single-asperity friction measurements at a water-graphite interface. Local mapping of the frictional force, which is based on the degree of the cantilever twisting, shows nearly friction-free when a tip scans over a nanobubble. Surprisingly, apart from being gapless, the associated friction loop exhibits a tilt in the cantilever twisting versus the tip's lateral displacement with the slope depending on the loading force.
View Article and Find Full Text PDFIn the operation of a dynamic mode atomic force microscope, a micro-fabricated rectangular cantilever is typically oscillated at or near its mechanical resonance frequency. Lateral bending resonances of cantilevers are rarely used because the resonances are not expected to be detected by the beam-deflection method. In this work, we found that micro-cantilevers with a large tip produced an out-of-plane displacement in lateral resonance (LR), which could be detected with the beam-deflection method.
View Article and Find Full Text PDFIn this work, we present a design based on Lorentz force induction to excite pure torsional resonances of different types of cantilevers in air as well as in water. To demonstrate the atomic force microscopy imaging capability, the phase-modulation torsional resonance mode is employed to resolve fine features of purple membranes in a buffer solution. Most importantly, force-versus-distance curves using a relatively stiff cantilever can clearly detect the characteristic oscillatory profiles of hydration layers at a water-mica interface, indicating the high force sensitivity of the torsional mode.
View Article and Find Full Text PDFEukaryotic flagella are responsible for the motile organelles that cause the migration of mammalian sperms. The lashing force and torque of the sperm flagellum contain critical information regarding the sperm health, as important evaluation factors for sperm screening. The objective of the study was to investigate the lashing force and torque of a sperm under physiological conditions using atomic force microscopy (AFM).
View Article and Find Full Text PDF