Publications by authors named "Ren ZhiWei"

Hydroxide exchange membrane (HEM) water electrolysis is promising for green hydrogen production due to its low cost and excellent performance. However, HEM often has insufficient stability in strong alkaline solutions, particularly under in-situ electrolysis operation conditions, hindering its commercialization. In this study, we discover that the in-situ stability of HEM is primarily impaired by the locally accumulated heat in HEM due to its low thermal conductivity.

View Article and Find Full Text PDF
Article Synopsis
  • The commercialization of perovskite solar cells (PSCs) is hindered by their fragility and sensitivity to moisture.
  • A new asynchronous cross-linking strategy using divinyl sulfone (DVS) improves perovskite crystallization and creates a durable network through post-treatment with glycerinum.
  • This method boosts the efficiency of PSCs to over 25%, enhances their water resistance, reduces stress, and improves durability, marking a significant advancement in their performance and longevity.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a novel electron transport layer using BHT@ZnO nanoparticles that enhances the efficiency and stability of inverted organic photovoltaic (OPV) devices, reaching a record efficiency of 19.47%.
  • The new device exhibits impressive long-term stability, retaining over 94% of its power conversion efficiency (PCE) after 8904 hours under ambient conditions and 81.5% after 7724 hours in maximum power point testing.
  • The study also reveals key mechanisms of light-induced degradation in OPVs, detailing how specific radicals attack different components, which may help in advancing OPV technology for commercialization.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on enhancing the crystallization of wide bandgap CsPbIBr perovskite materials for use in solar cells, which traditionally face challenges in achieving high-quality films with uniform morphology.
  • - By incorporating the ionic liquid [EMIM][PF] into the perovskite layer, the research demonstrates improved crystallization rates and formation of larger grain sizes, contributing to better film quality.
  • - The optimized [EMIM][PF] additive leads to perovskite solar cells achieving a power conversion efficiency of 17.11% and improved stability, highlighting the potential of ionic liquids in perovskite film development.
View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) have become pivotal in achieving high-performance perovskite solar cells (PSCs) and organic solar cells (OSCs) by significantly minimizing interfacial energy losses. In this study, we propose a co-adsorb (CA) strategy employing a novel small molecule, 2-chloro-5-(trifluoromethyl)isonicotinic acid (PyCA-3F), introducing at the buried interface between 2PACz and the perovskite/organic layers. This approach effectively diminishes 2PACz's aggregation, enhancing surface smoothness and increasing work function for the modified SAM layer, thereby providing a flattened buried interface with a favorable heterointerface for perovskite.

View Article and Find Full Text PDF

Objective: This work aimed to assess the bonding performance of universal adhesive and self-etch adhesives, and a comparative study was conducted using the same acid etching mode.

Methods: The selective acid-etching mode was used to simulate bonded restorations to teeth defects of isolated human molars including enamel and dentin. Microtensile bond strength and microleakage of all adhesives were tested and compared after 24 h and 5000 thermocycles, respectively.

View Article and Find Full Text PDF

Objective: Craniocervical dystonia (CCD) is a common type of segmental dystonia, which is a disabling disease that has been frequently misdiagnosed. Blepharospasm or cervical dystonia is the most usual symptom initially. Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) has been widely used for treating CCD, its clinical outcome has been primarily evaluated in small-scale studies.

View Article and Find Full Text PDF

Neurogenesis, play a vital role in neuronal plasticity of adult mammalian brains, and its dysregulation is present in the pathophysiology of Parkinson's disease (PD). While subthalamic nucleus deep brain stimulation (STN-DBS) at various frequencies has been proven effective in alleviating PD symptoms, its influence on neurogenesis remains unclear. This study aimed to investigate the effects of 1-week electrical stimulation at frequencies of 60Hz, 130Hz, and 180Hz on neurogenesis in the subventricular zone (SVZ) of PD rats.

View Article and Find Full Text PDF

The performance of dental resin composites is crucially influenced by the sizes and distributions of inorganic fillers. Despite the investigation of a variety of functional particles, glass fillers and nanoscale silica are still the predominant types in dental materials. However, achieving an overall improvement in the performance of resin composites through the optimization of their formulations remains a challenge.

View Article and Find Full Text PDF
Article Synopsis
  • * Research in this paper highlights that oxygen-doped carbon catalysts, specifically C-0.1M80, showed impressive catalytic activity with a high selectivity of 98.2% and a remarkable onset potential of 0.795 V in tests.
  • * The C-0.1M80 catalyst also demonstrated excellent stability and efficiency, maintaining a Faraday efficiency of 95.8% over a continuous 200-hour operation at an industrial current density.
View Article and Find Full Text PDF

Excess ammonium halides as composition additives are widely employed in perovskite light-emitting diodes (PeLEDs), aiming to achieve high performance by controlling crystallinity and passivating defects. However, an in-depth understanding of whether excess organoammonium components affect the film physical/electrical properties and the resultant device instability is still lacking. Here, the trade-off between the performance and stability in high-efficiency formamidinium lead iodide (FAPbI)-based PeLEDs with excess ammonium halides is pointed, and the underlying mechanism is explored.

View Article and Find Full Text PDF

The detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing.

View Article and Find Full Text PDF

Background: To evaluate the feasibility of treating odontoid fractures in the Chinese population with two cortical screws based on computed tomography (CT) scans and describe a new measurement strategy to guide screw insertion in treating these fractures.

Methods: A retrospective review of cervical computed tomographic scans of 128 patients (aged 18-76 years; men, 55 [43.0%]) was performed.

View Article and Find Full Text PDF

This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have been investigated recently in perovskite photovoltaics owing to their potential to boost optoelectronic performance and device stability. However, the impact of variations in the MOF side chain on perovskite characteristics and the mechanism of MOF/perovskite film formation remains unclear. In this study, three nanoscale thiol-functionalized UiO-66-type Zr-based MOFs (UiO-66-(SH) , UiO-66-MSA, and UiO-66-DMSA) are systematically employed and examined in perovskite solar cells (PSCs).

View Article and Find Full Text PDF

The pile fermentation process of Fuzhuan brick tea is unique in that it involves preheating without the use of starter cultures. The detailed metabolite changes and their drivers during this procedure are not known. Characterizing these unknown changes that occur in the metabolites and microbes during pile fermentation of Fuzhuan brick tea is important for industrial modernization of this traditional fermented food.

View Article and Find Full Text PDF

Objective: Spinal cord stimulation (SCS) and dorsal root entry zone (DREZ) lesioning are important therapeutic options for intractable post-traumatic neuropathic pain (PNP). However, surgical choice is controversial due to the need to maximize pain relief and reduce complications. This study aims to retrospectively analyze the effect and complications of DREZ lesioning for patients with PNP who were unresponsive to SCS and provide a surgical reference.

View Article and Find Full Text PDF

Objective: This study aimed to differentiate temporal-plus epilepsy (TPE) from temporal lobe epilepsy (TLE) using extraction of radiomics features from three-dimensional magnetization-prepared rapid acquisition gradient echo (3D-MPRAGE) imaging data.

Methods: Data from patients with TLE or TPE who underwent epilepsy surgery between January 2019 and January 2021 were retrospectively analyzed. Thirty-three regions of interest in the affected hemisphere of each patient were defined on 3D-MPRAGE images.

View Article and Find Full Text PDF

A series of conventional dynamic uniaxial compressive (CDUC) tests and coupled static dynamic loading (CSDL) tests were performed using a split Hopkinson compression bar (SHPB) system to explore the variable dynamic mechanical behavior and fracture characteristics of medium siltstone at a microscopic scale in the laboratory. In the CDUC tests, the dynamic uniaxial strength of the medium sandstone is rate-dependent in the range of 17.5 to 96.

View Article and Find Full Text PDF

Ti6Al4V titanium alloy is widely used in producing orthopedic and maxillofacial implants, but drawbacks include high elastic modulus, poor osseointegration performance, and toxic elements. A new medical titanium alloy material with better comprehensive performance is urgently needed in the clinic. Ti10Mo6Zr4Sn3Nb titanium alloy (referred to as Ti-B12) is a unique medical titanium alloy material developed by us.

View Article and Find Full Text PDF

Objective: At present, the most commonly used filler polymethyl methacrylate (PMMA) has the disadvantages of monomer toxicity, heat and leakage, and cannot be applied in young people. Therefore, finding a minimally invasive and good tissue-compatible alternative material has been a research hotspot in spine surgery in recent years. The aim of this study is to explore whether the memory alloy stent can avoid the complications of bone cement or not.

View Article and Find Full Text PDF

Buried interface modification is promising for preparing high-performance perovskite solar cells (PSCs) by improving the film quality and adjusting the interfacial energy level alignment. In this work, multifunctional ethylenediaminetetraacetic acid diammonium (EAD)-modulated ZnO is employed as an effective buried interface to regulate the interplay between SnO and CsPbIBr in carbon-based inorganic PSCs (C-IPSCs). The burying of EAD into the ZnO interlayer not only enhances the photoelectric properties of ZnO by passivating oxygen defects but also adjusts the energy level alignment of the buried interface.

View Article and Find Full Text PDF

Photodetectors (PDs) based on organic materials exhibit potential advantages such as low-temperature processing, and superior mechanical properties and form factors. They have seen rapid strides toward achieving performance metrics comparable to inorganic counterparts. Here, a simplified device architecture is employed to realize stable and high-performance organic PDs (OPDs) while further easing the device fabrication process.

View Article and Find Full Text PDF

Epilepsy affects more than 70 million people in the world. It is characterized by recurrent spontaneous seizures, and it is related to many neurological, cognitive, and psychosocial consequences. Glutamate neurotransmitter dysfunction has essential functions in the pathophysiology of epilepsy.

View Article and Find Full Text PDF

Background: Frameless robot-assisted deep brain stimulation (DBS) is an innovative technique for leads implantation. This study aimed to evaluate the accuracy and precision of this technique using the Sinovation SR1 robot.

Methods: 35 patients with Parkinson's disease who accepted conventional frame-based DBS surgery ( = 18) and frameless robot-assisted DBS surgery ( = 17) by the same group of neurosurgeons were analyzed.

View Article and Find Full Text PDF