Publications by authors named "Ren Anmin"

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a widespread nosocomial pathogen with a significant to cause both severe planktonic acute and biofilm-related chronic infections. Small RNAs (sRNAs) are noncoding regulatory molecules that are stabilized by the RNA chaperone Hfq to trigger various virulence-related signaling pathways. Here, we identified an Hfq-binding sRNA in P.

View Article and Find Full Text PDF

The bacterial membrane vesicles (MVs) are non-replicative, nanoscale structures that carry specific cargos and play multiple roles in microbe-host interactions. An appropriate MV isolation method that mimics complex pathogen infections in vivo is needed. After bacterial MVs extraction, flagella or pili can be frequently observed along with MVs by transmission electron microscope (TEM).

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen with multiple strategies to interact with other microbes and host cells, gaining fitness in complicated infection sites. The contact-dependent type VI secretion system (T6SS) is one critical secretion apparatus involved in both interbacterial competition and pathogenesis. To date, only limited numbers of T6SS-effectors have been clearly characterized in P.

View Article and Find Full Text PDF

Background: Ascending aortic perivascular adipose tissue (AA-PVAT) mainly comprises brown adipose tissue (BAT), originates from neural crest cells that derive from ectoderm, and plays important role in angiotensin II-induced vascular inflammation and remodeling in mice. However, the characterization and function of human AA-PVAT remains highly unclear.

Methods: Patients with coronary artery disease (CAD) (n = 20) and aortic valve disease (AVD) (n = 23) who underwent cardiac surgery consented to take part in transcriptome and histological studies.

View Article and Find Full Text PDF

Although GATA5 is vital in maintaining the function of endothelial cells, the relationship between GATA5 and angiogenesis, however, remains unclear. Our study aims to determine how endothelial GATA5 mediates angiogenesis. Using the ischemic hindlimb of mice with GATA5 overexpression in the endothelia (EC-Ad mice), we showed that GATA5 overexpression could improve blood perfusion and increase capillary density.

View Article and Find Full Text PDF

α1 Nicotinic acetylcholine receptor (α1nAChR) is an important nicotine receptor that is widely distributed in vascular smooth muscle cells, macrophages, and endothelial cells. However, the role of α1nAChR in nicotine-mediated atherosclerosis remains unclear. The administration of nicotine for 12 weeks increased the area of the atherosclerotic lesion, the number of macrophages infiltrating the plaques, and the circulating levels of inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, in apolipoprotein E-deficient (ApoE ) mice fed a high-fat diet.

View Article and Find Full Text PDF

Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (7-nAChR) signaling had been demonstrated attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective 7-nAChR agonist, affected activities of matrix metalloproteinase (MMP) and inflammatory cytokines in nicotine-treatment RAW264.7 and MOVAS cells and to assess the underlying molecular mechanisms.

View Article and Find Full Text PDF