Stud Health Technol Inform
August 2024
This paper presents a versatile solution to formally represent the contents of electronic health records. It is based on the knowledge graph paradigm, and semantic web standards RDF and OWL. It employs the established semantic standards SNOMED CT and FHIR, which warrant international interoperability.
View Article and Find Full Text PDFThe emerging European Health Data Space (EHDS) Regulation opens new prospects for large-scale sharing and re-use of health data. Yet, the proposed regulation suffers from two important limitations: it is designed to benefit the whole population with limited consideration for individuals, and the generation of secondary datasets from heterogeneous, unlinked patient data will remain burdensome. AIDAVA, a Horizon Europe project that started in September 2022, proposes to address both shortcomings by providing patients with an AI-based virtual assistant that maximises automation in the integration and transformation of their health data into an interoperable, longitudinal health record.
View Article and Find Full Text PDFThe effectiveness of machine learning models to provide accurate and consistent results in drug discovery and clinical decision support is strongly dependent on the quality of the data used. However, substantive amounts of open data that drive drug discovery suffer from a number of issues including inconsistent representation, inaccurate reporting, and incomplete context. For example, databases of FDA-approved drug indications used in computational drug repositioning studies do not distinguish between treatments that simply offer symptomatic relief from those that target the underlying pathology.
View Article and Find Full Text PDFIt is essential for the advancement of science that researchers share, reuse and reproduce each other's workflows and protocols. The FAIR principles are a set of guidelines that aim to maximize the value and usefulness of research data, and emphasize the importance of making digital objects findable and reusable by others. The question of how to apply these principles not just to data but also to the workflows and protocols that consume and produce them is still under debate and poses a number of challenges.
View Article and Find Full Text PDFBackground: Current approaches to identifying drug-drug interactions (DDIs), include safety studies during drug development and post-marketing surveillance after approval, offer important opportunities to identify potential safety issues, but are unable to provide complete set of all possible DDIs. Thus, the drug discovery researchers and healthcare professionals might not be fully aware of potentially dangerous DDIs. Predicting potential drug-drug interaction helps reduce unanticipated drug interactions and drug development costs and optimizes the drug design process.
View Article and Find Full Text PDFChemotherapy is a routine treatment approach for early-stage cancers, but the effectiveness of such treatments is often limited by drug resistance, toxicity, and tumor heterogeneity. Combination chemotherapy, in which two or more drugs are applied simultaneously, offers one promising approach to address these concerns, since two single-target drugs may synergize with one another through interconnected biological processes. However, the identification of effective dual therapies has been particularly challenging; because the search space is large, combination success rates are low.
View Article and Find Full Text PDF