Chronic autoimmune diseases often lead to long-term sequelae and require lifelong immunosuppression because of an incomplete understanding of the triggers and drivers in genetically predisposed patients. Gut bacteria that escape the gut barrier, known as translocating gut pathobionts, have been implicated as instigators and perpetuators of extraintestinal autoimmune diseases in mice. The gut microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts.
View Article and Find Full Text PDFUnlabelled: Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont induces human IFNγ Th17 differentiation and IgG3 subclass switch of anti- RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis.
View Article and Find Full Text PDFRemoval of apoptotic cells by phagocytes (also called efferocytosis) is a crucial process for tissue homeostasis. Professional phagocytes express a plethora of surface receptors enabling them to sense and engulf apoptotic cells, thus avoiding persistence of dead cells and cellular debris and their consequent effects. Dysregulation of efferocytosis is thought to lead to secondary necrosis and associated inflammation and immune activation.
View Article and Find Full Text PDFCancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy.
View Article and Find Full Text PDF