Many gut microorganisms critical to human health rely on nutrients produced by each other for survival; however, these cross-feeding interactions are still challenging to quantify and remain poorly characterized. Here, we introduce a Metabolite Exchange Score (MES) to quantify those interactions. Using metabolic models of prokaryotic metagenome-assembled genomes from over 1600 individuals, MES allows us to identify and rank metabolic interactions that are significantly affected by a loss of cross-feeding partners in 10 out of 11 diseases.
View Article and Find Full Text PDFGlobally, the anaerobic bacterium causes severe disease in a wide array of hosts; however, strains are also carried asymptomatically. Accessory genes are responsible for much of the observed phenotypic variation and virulence within this species, with toxins frequently encoded on conjugative plasmids and many isolates carrying up to 10 plasmids. Despite this unusual biology, current genomic analyses have largely excluded isolates from healthy hosts or environmental sources.
View Article and Find Full Text PDFSummary: Shotgun metagenomic sequencing provides the capacity to understand microbial community structure and function at unprecedented resolution; however, the current analytical methods are constrained by a focus on taxonomic classifications that may obfuscate functional relationships. Here, we present expam, a tree-based, taxonomy agnostic tool for the identification of biologically relevant clades from shotgun metagenomic sequencing.
Availability And Implementation: expam is an open-source Python application released under the GNU General Public Licence v3.
Background: From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic.
Aim: This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development.
A growing number of experimental and computational approaches are illuminating the "microbial dark matter" and uncovering the integral role of commensal microbes in human health. Through this work, it is now clear that the human microbiome presents great potential as a therapeutic target for a plethora of diseases, including inflammatory bowel disease, diabetes and obesity. The development of more efficacious and targeted treatments relies on identification of causal links between the microbiome and disease; with future progress dependent on effective links between state-of-the-art sequencing approaches, computational analyses and experimental assays.
View Article and Find Full Text PDF