The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al.
View Article and Find Full Text PDFAn ion-exchange-resin-based microfluidic pump is introduced that utilizes trace amounts of ions to generate fluid flows. We show experimentally that our pump operates in almost deionized water for periods exceeding 24 h and induces fluid flows of μm s over hundreds of μm. This flow displays a far-field, power-law decay which is characteristic of two-dimensional (2D) flow when the system is strongly confined and of three-dimensional (3D) flow when it is not.
View Article and Find Full Text PDFWe show experimentally that an inexpensive glass microcapillary can accumulate λ-phage DNA at its tip and deliver the DNA into the capillary using a combination of electro-osmotic flow, pressure-driven flow, and electrophoresis. We develop an efficient simulation model based on the electrokinetic equations and the finite-element method to explain this phenomenon. As a proof of concept for the generality of this trapping mechanism we use our numerical model to explore the effect of the salt concentration, the capillary surface charge, the applied voltage, the pressure difference, and the mobility of the analyte molecules.
View Article and Find Full Text PDFElectrokinetic transport phenomena can strongly influence the behaviour of macromolecules and colloidal particles in solution, with applications in, e.g., DNA translocation through nanopores, electro-osmotic flow in nanocapillaries, and electrophoresis of charged macromolecules.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
April 2015
Colloidal spheres with a partial platinum surface coating perform autophoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds.
View Article and Find Full Text PDFWe report a spatial resolution of 5.4 nm in images of sarcoplasmic reticulum from rabbit muscle. The images were obtained in an aberration-corrected photoemission electron microscope with a hyperbolic mirror as the correcting element for spherical and chromatic aberration.
View Article and Find Full Text PDFSpectromicroscopy with the imaging technique of X-ray photoelectron emission microscopy (X-PEEM) is a microchemical analytical tool installed in many synchrotron radiation laboratories, and which is finding application in diverse fields of research. The method of sample analysis, X-ray absorption spectroscopy, does not encounter the same problems as X-ray photoemission spectroscopy when sample charging occurs, hence even good insulators may often be analyzed without any apparent artifacts in images or spectra. We show, however, that charging effects cannot be neglected.
View Article and Find Full Text PDF: The performance characteristics of electron microscopes and probe-forming instruments depend ultimately on the focal properties and aberrations of electron lenses. A practical method of experimentally determining the properties of electron lenses is described. The method utilizes shadows cast by two meshes inserted separately in front of the lens and behind the lens to study the properties of the image of a point source.
View Article and Find Full Text PDFPhotoelectron imaging is a sensitive surface technique in which photons are used to excite electron emission. This novel method has been applied successfully in studies of relatively flat cultured cells, viruses, and protein-DNA complexes. However, rounded-up cell types such as tumor cells frequently are more difficult to image.
View Article and Find Full Text PDFLow-energy electron microscopy (LEEM) and mirror electron microscopy (MEM) utilize a parallel beam of slow-moving electrons backscattered from the specimen surface to form an image. If the electrons strike the surface an LEEM image is produced and if they are turned back just before reaching the surface an MEM image results. The applications thus far have been in surface physics.
View Article and Find Full Text PDFA unified treatment of the resolution of three closely related techniques is presented: emission electron microscopy (particularly photoelectron microscopy, PEM), low energy electron microscopy (LEEM), and mirror electron microscopy (MEM). The resolution calculation is based on the intensity distribution in the image plane for an object of finite size rather than for a point source. The calculations take into account the spherical and chromatic aberrations of the accelerating field and of the objective lens.
View Article and Find Full Text PDFThe design of a high-resolution photoelectron microscope (photoelectron emission microscope) is described. It is an oil-free ultrahigh-vacuum instrument utilizing electrostatic electron optics. New designs are presented for a specimen translator, cathode stage, aperture stop control, electrostatic hexapole stigmator, beam shutter, and camera system.
View Article and Find Full Text PDFThe resolution of emission electron microscopes is calculated by determining the intensity distribution in the image. The object is a small disc of uniform brightness centered on the axis. A finite object, as distinct form a point source, provides a non-zero current in the image without the requirement of infinite object brightness and the consequent infinities in the geometrical intensity distribution.
View Article and Find Full Text PDFPhotoelectron imaging involves the photoejection of low-energy electrons from a specimen surface exposed to UV light. The electrons are then accelerated and focused by an electron-optics system in much the same way fluorescent light is focused in an optical microscope. Thus, photoelectron imaging is the electron-optical analog of fluorescence microscopy.
View Article and Find Full Text PDFThe depth of information is defined as the distance below the surface of a specimen from which information is contributed at a specific resolution. A simplified model of photoemission is used to explore the relationship between electron escape depths and depth of information in photoelectron microscopy (PEM or photoemission electron microscopy). The depth of information is equal to the escape depth when the escape depth is small relative to the instrument resolution.
View Article and Find Full Text PDFPhotoelectron micrographs of gold-palladium coated mouse 3T3 cells and chick embryo fibroblasts are presented. Since the gold-palladium suppresses differences in work function, the cell morphology seen in these micrographs is due to relief contrast. The heights of comparable cells were measured from the parallax present in transmission electron micrograph stereo-pairs of cell surface replicas.
View Article and Find Full Text PDFScan Electron Microsc
March 1982
A photoelectron microscope (photoemission electron microscope) has been designed and built for the study of organic and biological samples. The microscope is an oil-free stainless steel high vacuum instrument pumped by a titanium sublimation pump, an ion pump, and molecular sieve roughing pumps. The electron lenses are of the electrostatic unipotential type.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 1972
A general method of imaging organic and biological surfaces based on the photoelectric effect is reported. For the experiments, a photoelectron emission microscope was constructed. It is an ultrahigh vacuum instrument using electrostatic electron lenses, microchannel plate image intensifier, cold stage, hydrogen excitation source, and magnesium fluoride optics.
View Article and Find Full Text PDF