Understanding the origin and maintenance of genetic diversity is crucial to elucidate population dynamics of unicellular microalgae, their microevolutionary history and their adaptive ability. The planktonic, domoic acid-producing diatom Pseudo-nitzschia multistriata has a ubiquitous distribution in the world oceans and past population genetics studies, based on few genomic loci, have shown a clear temporal structure over different years in the Gulf of Naples (Italy). Despite the ecological and toxicological importance of this organism, detailed information on its diversity across the whole genome and at the population level is still lacking.
View Article and Find Full Text PDFDDX39B is a conserved member of the DEAD-box family of ATP-dependent RNA helicases, critical in mRNA metabolism across eukaryotes. DDX39B is also a core component of the TRanscription-EXport (TREX) super protein complex, which recent studies have highlighted the important role of its subunits in neurodevelopmental disorders. Here, we describe six individuals from five families, four harboring de novo missense variants in DDX39B, and one with an inherited splicing variant, presenting with variable developmental delay, congenital hypotonia, epilepsy, short stature, skeletal abnormalities, dysmorphic features and microcephaly in three patients.
View Article and Find Full Text PDFTransposable elements (TEs) are mobile genomic elements constituting a big fraction of eukaryotic genomes. They ignite an evolutionary arms race with host genomes, which in turn evolve strategies to restrict their activity. Despite being tightly repressed, TEs display precisely regulated expression patterns during specific stages of mammalian development, suggesting potential benefits for the host.
View Article and Find Full Text PDFBackground: Mainly known as a transcription factor patterning the rostral brain and governing its histogenesis, FOXG1 has been also detected outside the nucleus; however, biological meaning of that has been only partially clarified.
Results: Prompted by FOXG1 expression in cytoplasm of pallial neurons, we investigated its implication in translational control. We documented the impact of FOXG1 on ribosomal recruitment of Grin1-mRNA, encoding for the main subunit of NMDA receptor.
Dietary restriction in the form of fasting is a putative key to a healthier and longer life, but these benefits may come at a trade-off with reproductive fitness and may affect the following generation(s). The potential inter- and transgenerational effects of long-term fasting and starvation are particularly poorly understood in vertebrates when they originate from the paternal line. We utilised the externally fertilising zebrafish amenable to a split-egg clutch design to explore the male-specific effects of fasting/starvation on fertility and fitness of offspring independently of maternal contribution.
View Article and Find Full Text PDFLong Interspersed Nuclear Elements-1s (L1s) are transposable elements that constitute most of the genome's transcriptional output yet have still largely unknown functions. Here we show that L1s are required for proper mouse brain corticogenesis operating as regulatory long non-coding RNAs. They contribute to the regulation of the balance between neuronal progenitors and differentiation, the migration of post-mitotic neurons and the proportions of different cell types.
View Article and Find Full Text PDFIn mouse, the zygotic genome activation (ZGA) is coordinated by MERVL elements, a class of LTR retrotransposons. In addition to MERVL, another class of retrotransposons, LINE-1 elements, recently came under the spotlight as key regulators of murine ZGA. In particular, LINE-1 transcripts seem to be required to switch-off the transcriptional program started by MERVL sequences, suggesting an antagonistic interplay between LINE-1 and MERVL pathways.
View Article and Find Full Text PDFBackground: Autism spectrum disorder (ASD) is a set of highly heterogeneous neurodevelopmental diseases whose genetic etiology is not completely understood. Several investigations have relied on transcriptome analysis from peripheral tissues to dissect ASD into homogenous molecular phenotypes. Recently, analysis of changes in gene expression from postmortem brain tissues has identified sets of genes that are involved in pathways previously associated with ASD etiology.
View Article and Find Full Text PDFSINEUPs are natural and synthetic antisense long non-coding RNAs (lncRNAs) selectively enhancing target mRNAs translation by increasing their association with polysomes. This activity requires two RNA domains: an embedded inverted SINEB2 element acting as effector domain, and an antisense region, the binding domain, conferring target selectivity. SINEUP technology presents several advantages to treat genetic (haploinsufficiencies) and complex diseases restoring the physiological activity of diseased genes and of compensatory pathways.
View Article and Find Full Text PDFIn anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood.
View Article and Find Full Text PDFLINE L1 are transposable elements that can replicate within the genome by passing through RNA intermediates. The vast majority of these element copies in the human genome are inactive and just between 100 and 150 copies are still able to mobilize. During evolution, they could have been positively selected for beneficial cellular functions.
View Article and Find Full Text PDFAdult neural progenitor cells (aNPCs) ensure lifelong neurogenesis in the mammalian hippocampus. Proper regulation of aNPC fate has thus important implications for brain plasticity and healthy aging. Piwi proteins and the small noncoding RNAs interacting with them (piRNAs) have been proposed to control memory and anxiety, but the mechanism remains elusive.
View Article and Find Full Text PDFSummary: Transposable elements (TEs) play key roles in crucial biological pathways. Therefore, several tools enabling the quantification of their expression were recently developed. However, many of the existing tools lack the capability to distinguish between the transcription of autonomously expressed TEs and TE fragments embedded in canonical coding/non-coding non-TE transcripts.
View Article and Find Full Text PDFTransposable elements (TEs), also known as "jumping genes", are repetitive sequences with the capability of changing their location within the genome. They are key players in many different biological processes in health and disease. Therefore, a reliable quantification of their expression as transcriptional units is crucial to distinguish between their independent expression and the transcription of their sequences as part of canonical transcripts.
View Article and Find Full Text PDFCell Physiol Biochem
June 2022
Background/aims: Quantitative and qualitative alterations in the sense of smell are well established symptoms of COVID-19. Some reports have shown that non-neuronal supporting (also named sustentacular) cells of the human olfactory epithelium co-express ACE2 and TMPRSS2 necessary for SARS-CoV-2 infection. In COVID-19, syncytia were found in many tissues but were not investigated in the olfactory epithelium.
View Article and Find Full Text PDFBackground: Transposable elements (TEs) widely contribute to the evolution of genomes allowing genomic innovations, generating germinal and somatic heterogeneity, and giving birth to long non-coding RNAs (lncRNAs). These features have been associated to the evolution, functioning, and complexity of the nervous system at such a level that somatic retrotransposition of long interspersed element (LINE) L1 has been proposed to be associated to human cognition. Among invertebrates, octopuses are fascinating animals whose nervous system reaches a high level of complexity achieving sophisticated cognitive abilities.
View Article and Find Full Text PDFThe possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential SARS-CoV-2 fetal brain pathogenesis.
View Article and Find Full Text PDFTransposable elements (TEs) are mobile genetic elements that made up about half the human genome. Among them, the autonomous non-LTR retrotransposon long interspersed nuclear element-1 (L1) is the only currently active TE in mammals and covers about 17% of the mammalian genome. L1s exert their function as structural elements in the genome, as transcribed RNAs to influence chromatin structure and as retrotransposed elements to shape genomic variation in somatic cells.
View Article and Find Full Text PDFDiatoms are fast-growing and winning competitors in aquatic environments, possibly due to optimized growth performance. However, their life cycles are complex, heteromorphic, and not fully understood. Here, we report on the fine control of cell growth and physiology during the sexual phase of the marine diatom .
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant disorder with progressive motor dysfunction and cognitive decline. The disease is caused by a CAG repeat expansion in the gene, which elongates a polyglutamine stretch of the HD protein, Huntingtin. No therapeutic treatments are available, and new pharmacological targets are needed.
View Article and Find Full Text PDFrepresents one of the highest confidence genetic risk factors implied in Autism Spectrum Disorders, with most mutations leading to haploinsufficiency and the insurgence of specific phenotypes, such as macrocephaly, facial dysmorphisms, intellectual disability, and gastrointestinal complaints. While extensive studies have been conducted on the possible consequences of suppression and protein coding RNAs dysregulation during neuronal development, the effects of transcriptional changes of long non-coding RNAs (lncRNAs) remain unclear. In this study, we focused on a peculiar class of natural antisense lncRNAs, SINEUPs, that enhance translation of a target mRNA through the activity of two RNA domains, an embedded transposable element sequence and an antisense region.
View Article and Find Full Text PDFRNA molecules have emerged as a new class of promising therapeutics to expand the range of druggable targets in the genome. In addition to 'canonical' protein-coding mRNAs, the emerging richness of sense and antisense long non-coding RNAs (lncRNAs) provides a new reservoir of molecular tools for RNA-based drugs. LncRNAs are composed of modular structural domains with specific activities involving the recruitment of protein cofactors or directly interacting with nucleic acids.
View Article and Find Full Text PDFChromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood.
View Article and Find Full Text PDFRAS-associated autoimmune leukoproliferative disease (RALD) is a rare immune dysregulation syndrome caused by somatic gain-of-function mutations of either NRAS or KRAS gene in hematopoietic cells. We describe a 27-year-old patient presenting at 5 months of age with recurrent infections and generalized lymphadenopathy who developed a complex multi-organ autoimmune syndrome with hypogammaglobulinemia, partially controlled with oral steroids, hydroxichloroquine, mofetil mycophenolate and IVIG prophylaxis. Activation of type I interferon pathway was observed in peripheral blood.
View Article and Find Full Text PDFProlyl 3-hydroxylase 2 () catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified gene through a deep-sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF-A).
View Article and Find Full Text PDF