Publications by authors named "Remko Akkerman"

Truncated hemisphere parts were press formed with two commercially available unidirectional thermoplastic composite materials, namely Toray TC1225 and Solvay APC. The width and layup of the laminates were varied to influence the wrinkling severity, to trigger various deformation mechanisms and to influence the amount of in-plane deformation. A total of eight layup/width combinations were selected and formed in triplicate for both materials, resulting in the analysis of 48 parts in total.

View Article and Find Full Text PDF

The wind energy sector is growing rapidly. Wind turbines are increasing in size, leading to higher tip velocities. The leading edges of the blades interact with rain droplets, causing erosion damage over time.

View Article and Find Full Text PDF

Pultruded fiber-reinforced polymer composites are susceptible to microstructural nonuniformity such as variability in fiber volume fraction (Vf), which can have a profound effect on process-induced residual stress. Until now, this effect of non-uniform Vf distribution has been hardly addressed in the process models. In the present study, we characterized the Vf distribution and accompanying nonuniformity in a unidirectional fiber-reinforced pultruded profile using optical light microscopy.

View Article and Find Full Text PDF

Advanced thermoplastic composites manufacturing using laser assisted tape placement or winding (LATP/LATW) is a challenging task as monitoring and predicting nip point (bonding) temperature are difficult especially on curved surfaces. A comprehensive numerical analysis of the heat flux and temperature distribution near the nip point is carried out in this paper for helical winding of fiber reinforced thermoplastic tapes on a cylindrically shaped mandrel. An optical ray-tracing technique is coupled with a numerical heat transfer model in the process simulation tool.

View Article and Find Full Text PDF

Printing arrays of responsive spots for multiplexed sensing with electrochemical readout requires new molecules and precise, high-throughput deposition of active compounds on microelectrodes with spatial control. We have designed and developed new redox-responsive polymers, featuring a poly(ferrocenylsilane) (PFS) backbone and side groups with disulfide units, which allow an efficient and stable bonding to Au substrates, using sulfur-gold coupling chemistry in a "grafting-to" approach. The polymer molecules can be employed for area selective molecular sensing following their deposition by high-precision inkjet printing.

View Article and Find Full Text PDF

In this research non-collinear wave mixing is used as a non-destructive testing method where the amplitude of the scattering wave contains information on the condition of a material. The practical implementation of non-collinear wave mixing as a non-destructive testing technique is limited by many factors such as the geometry and shape of the structure, the accessibility to the specimen's surfaces and the ultrasonic sensors available to perform measurements. A novel approach to steer the propagation direction of a generated wave from the mixing of two incident acoustic waves is proposed.

View Article and Find Full Text PDF

In this research, ultrasonic pulse echo measurements are used to quantify through thickness chemical degradation in thin mortar specimens. The degradation level is predicted using the time of travel of the acoustic wave through the thickness of the structure. The front and back wall interaction reflections are used to obtain additional information from very early stage degradation.

View Article and Find Full Text PDF

The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization.

View Article and Find Full Text PDF