Publications by authors named "Remith Pongilat"

Controlling "polysulfide dissolution" and pacifying "polysulfide shuttle" hold the key in developing a lithium-sulfur battery with superior electrochemical performance. Further, exploration of the concept of electrocatalysts plays a significant role in enhancing the electrochemical reversibility of polysulfides in lithium-sulfur battery. Herein, ruthenium nanoparticles-decorated porous, hollow carbon spheres have been successfully prepared and deployed as electrocatalyst as well as sulfur host in the lithium-sulfur battery assembly.

View Article and Find Full Text PDF

Porous micro/nanostructures of earth abundant and ecobenign metals are emerging as advanced green materials for use in electrochemical energy storage devices. We present here the custom designed construction of a hybrid architecture containing porous MnO microspheres, formed out of hierarchically assembled nanoparticles using a template-free co-precipitation method, wherein the sacrificial template growth of porous spheres has been obtained by a solution mediated and time dependent oxidation strategy. The nanoporous channels in the MnO microspheres and the nanosized primary particles of MnO anodes in synergy increase the electrolyte percolation, resulting in a discharge capacity of 1200 mA h g(-1) at a current density of 50 mA g(-1) and a capacity as high as 450 mA h g(-1) under the 1000 mA g(-1) condition.

View Article and Find Full Text PDF