Macrophages are major host cells for the protozoan Leishmania parasite. Depending on their activation state, they either contribute to the detection and elimination of Leishmania spp. or promote parasite resilience.
View Article and Find Full Text PDFThe present study demonstrates that, in addition to interacting with galactosylceramide (GalCer), HIV-1, HIV-2, and SIV envelope glycoproteins are able to interact with glucosylceramide (GlcCer), lactosylceramide (LacCer), and ceramide. These interactions were characterized by using three complementary approaches based on molecular binding and physicochemical assays. The binding assays showed that iodinated radiolabeled HIV-1 and HIV-2 glycoproteins (I-gp) interact physically with GalCer, GlcCer, LacCer, and ceramide previously separated by thin layer chromatography (TLC) or directly coated on a flexible 96-well plate.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19.
View Article and Find Full Text PDFNeutrophils are the most prevalent immune cells in circulation, but the repertoire of canonical inflammasomes in neutrophils and their respective involvement in neutrophil IL-1β secretion and neutrophil cell death remain unclear. Here, we show that neutrophil-targeted expression of the disease-associated gain-of-function Nlrp3 mutant suffices for systemic autoinflammatory disease and tissue pathology in vivo. We confirm the activity of the canonical NLRP3 and NLRC4 inflammasomes in neutrophils, and further show that the NLRP1b, Pyrin and AIM2 inflammasomes also promote maturation and secretion of interleukin (IL)-1β in cultured bone marrow neutrophils.
View Article and Find Full Text PDFDetection of microbes relies on the expression of germline-encoded pattern recognition receptors (PRRs). While PRRs can directly sense conserved pattern expressed by various microbes, they can also induce effector-triggered immunity (ETI) by sensing pathogenic alterations of cellular homeostasis. One consequence of ETI is the death of the infected cell through the induction of inflammasome-dependent cell death, namely, pyroptosis.
View Article and Find Full Text PDFThis paper presents a molecular characterization of the interaction between the SARS-CoV-2 envelope (E) protein and TLR2. We demonstrated that the E protein, both as a recombinant soluble protein and as a native membrane protein associated with SARS-CoV-2 viral particles, interacts physically with the TLR2 receptor in a specific and dose-dependent manner. Furthermore, we showed that the specific interaction with the TLR2 pathway activates the NF-κB transcription factor and stimulates the production of the CXCL8 inflammatory chemokine.
View Article and Find Full Text PDFInflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells.
View Article and Find Full Text PDFstrains are responsible for a majority of human extra-intestinal infections, resulting in huge direct medical and social costs. We had previously shown that HlyF encoded by a large virulence plasmid harbored by pathogenic is not a hemolysin but a cytoplasmic enzyme leading to the overproduction of outer membrane vesicles (OMVs). Here, we showed that these specific OMVs inhibit the macroautophagic/autophagic flux by impairing the autophagosome-lysosome fusion, thus preventing the formation of acidic autolysosomes and autophagosome clearance.
View Article and Find Full Text PDFRegulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 19 (COVID-19), which ranges from mild respiratory symptoms to acute respiratory distress syndrome, and death in the most severe cases. Immune dysregulation with altered innate cytokine responses is thought to contribute to disease severity. Here, we characterized in depth host cell responses against SARS-CoV-2 in primary human airway epithelia (HAE) and immortalized cell lines.
View Article and Find Full Text PDFInflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses.
View Article and Find Full Text PDFIn the present study we showed that HIV-1 Tat protein stimulated the expression of Indoleamine 2,3 dioxygenase (IDO) -1 in human monocytes derived dendritic cells (MoDC) but not IDO-2 by acting directly at the cell membrane level. This induction of IDO-1 is dependent on the secondary structure of Tat protein, since stimulation with a chemically oxidized Tat protein loses its capacity to induce the production of IDO-1. Among the variety of candidate receptors described for Tat, we demonstrated that Tat protein interacted physically with TLR4/MD2 complex.
View Article and Find Full Text PDFThe trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions.
View Article and Find Full Text PDFThe opportunistic human pathogen Pseudomonas aeruginosa effectively colonizes host epithelia using pili as primary adhesins. Here we uncover a surface-specific asymmetric virulence program that enhances P. aeruginosa host colonization.
View Article and Find Full Text PDFHuman HIV-1 infection leads inevitably to a chronic hyper-immune-activation. However, the nature of the targeted receptors and the pathways involved remain to be fully elucidated. We demonstrate that X4-tropic gp120 induced the production of TNF-α and IL-10 by monocytes through activation of a cell membrane receptor, distinct from the CD4, CXCR4, and MR receptors.
View Article and Find Full Text PDFHIV-1 Tat protein induces the production of CXCL8 chemokine in a TLR4/MD2 and PKC dependent manner. The objective of this study was to understand whether these two pathways were distinct or constituted a single common pathway, and to determine the nature of the PKC isoforms involved and their interrelation with the activation of NF-κB and CXCL8 gene product expression. Here, we show that Tat-induced CXCL8 production is essentially dependent on the activation of PKC delta isoform, as shown a) by the capacity of PKC delta dominant negative (DN), and Rottlerin, a selective PKC delta pharmacological inhibitor, to inhibit Tat-induced CXCL8 production and b) by the ability of the constitutively active (CAT) isoform of PKC delta to induce CXCL8 production in a HEK cell line in the absence of Tat stimulation.
View Article and Find Full Text PDFUnlabelled: In this study, we show that the HIV-1 Tat protein interacts with rapid kinetics to engage the Toll-like receptor 4 (TLR4) pathway, leading to the production of proinflammatory and anti-inflammatory cytokines. The pretreatment of human monocytes with Tat protein for 10 to 30 min suffices to irreversibly engage the activation of the TLR4 pathway, leading to the production of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), two cytokines strongly implicated in the chronic activation and dysregulation of the immune system during HIV-1 infection. Therefore, this study analyzed whether the HIV-1 Tat protein is able to activate these two pathways separately or simultaneously.
View Article and Find Full Text PDFFibroblast growth factor 1 (FGF1) is induced during myoblast differentiation at both transcriptional and translational levels. Here, we identify hnRNPM and p54nrb/NONO present in protein complexes bound to the FGF1 promoter and to the mRNA internal ribosome entry site (IRES). Knockdown or overexpression of these proteins indicate that they cooperate in activating IRES-dependent translation during myoblast differentiation, in a promoter-dependent manner.
View Article and Find Full Text PDFDendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8(+) T cells. There is strong in vivo evidence that the mouse XCR1(+) DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed.
View Article and Find Full Text PDFWe recently reported that the human immunodeficiency virus type-1 (HIV-1) Tat protein induced the expression of programmed death ligand-1 (PD-L1) on dendritic cells (DCs) through a TLR4 pathway. However, the underlying mechanisms by which HIV-1 Tat protein induces the abnormal hyper-activation of the immune system seen in HIV-1 infected patients remain to be fully elucidated. In the present study, we report that HIV-1 Tat protein induced the production of significant amounts of the pro-inflammatory IL-6 and IL-8 cytokines by DCs and monocytes from both healthy and HIV-1 infected patients.
View Article and Find Full Text PDFUnlabelled: Chronic human immunodeficiency virus type 1 (HIV-1) infection is associated with induction of T-cell coinhibitory pathways. However, the mechanisms by which HIV-1 induces upregulation of coinhibitory molecules remain to be fully elucidated. The aim of the present study was to determine whether and how HIV-1 Tat protein, an immunosuppressive viral factor, induces the PD-1/PD-L1 coinhibitory pathway on human dendritic cells (DCs).
View Article and Find Full Text PDFBackground: HIV-1 infection results in hyper-immune activation and immunological disorders as early as the asymptomatic stage. Here, we hypothesized that during early HIV-1 infection, HIV-1 Tat protein acts on monocytes/macrophages to induce anti-inflammatory and proinflammatory cytokines and participates in immune dysregulation.
Results: In this work we showed that Tat protein: i) by its N-terminal domain induces production of both IL-10 and TNF-α in a TLR4-MD2 dependent manner, ii) interacts specifically with TLR4-MD2 and MD2 with high affinity but not with CD14, iii) induces in vivo TNF-α and IL-10 in a TLR4 dependent manner.