We report in this paper a novel Cu-catalyzed synthesis of polysubstituted 1-pyrrolines. The reaction of β,γ-unsaturated oxime esters 4 with terminal alkynes 5 in the presence of a catalytic amount of Cu(OAc) and 2,2'-biquinoline affords the corresponding 1,6-enynimines, which undergo a highly stereoselective Alder-ene reaction to afford 1-pyrrolines with concomitant generation of a quaternary carbon and a 2-azadiene motif. It represents an unusual [4+1] heteroannulation reaction wherein terminal alkynes act as a one carbon donor and are 1,1-difunctionalized.
View Article and Find Full Text PDFWe report herein an enantioselective total synthesis of (-)-artatrovirenol A, a structurally unprecedented cage-like sesquiterpenoid. The synthesis features the following key steps: (a) cationic chiral oxazaborolidinium-catalyzed Diels-Alder reaction between isoprene and ethyl ()-5-((-butyldimethylsilyl)oxy)-4-oxopent-2-enoate for the rapid synthesis of an enantioenriched 10-carbon bicyclic lactone; (b) union of two enantioenriched fragments by a diastereoselective Mukaiyama-Michael addition for the convergent assembly of an intermediate with all 15 carbons of the natural product; (c) intramolecular de Mayo [2 + 2] cycloaddition/retro-aldol sequence transforming a bicyclic compound to a tetracyclic one with concomitant generation of a five- and a seven-membered ring; (d) Lewis acid-triggered intramolecular ring opening of epoxide generating the norbornane substructure; and (e) Chugaev elimination converting the norbornane to the more strained norbornene.
View Article and Find Full Text PDFTransition-metal-catalyzed [4+2] heteroannulation of α,β-unsaturated oximes and their derivatives with alkynes has been developed into a powerful strategy for the synthesis of pyridines. It nevertheless lacks regioselectivity when unsymmetrically substituted alkynes are used. We report herein the unprecedented synthesis of polysubstituted pyridines by a formal [5+1] heteroannulation of two readily accessible building blocks.
View Article and Find Full Text PDFNitrogen-substituted alkynes, such as ynamines and ynamides, are versatile synthetic building blocks. Ynimines bearing additional nucleophilic and electrophilic centers relative to ynamines and ynamides are expected to have high synthetic potential. However, their chemical reactivity remains unexplored owing mainly to the lack of synthetic accessibility.
View Article and Find Full Text PDFThe synthesis of fully substituted α--pyrrolyl and indolyl ketones via enantioselective palladium-catalyzed allylic alkylation is described. The acyclic ketones are alkylated in high yields with high enantioselectivities through the use of an electron-deficient phosphinooxazoline ligand, furnishing a highly congested and synthetically challenging stereocenter. The obtained alkylation products contain multiple reactive sites poised for additional functionalizations and diversification.
View Article and Find Full Text PDFThe enantioselective palladium-catalyzed decarboxylative allylic alkylation of fully substituted α-hydroxy acyclic enol carbonates providing tetrasubstituted benzoin derivatives is reported. Investigation into the transformation revealed that preparation of the starting material as a single enolate isomer is crucial for optimal enantioselectivity. The obtained alkylation products contain multiple reactive sites that can be utilized toward the synthesis of stereochemically rich derivatives.
View Article and Find Full Text PDF