Publications by authors named "Remi Blandin"

This study investigated how the bandwidths of resonances simulated by transmission-line models of the vocal tract compare to bandwidths measured from physical three-dimensional printed vowel resonators. Three types of physical resonators were examined: models with realistic vocal tract shapes based on Magnetic Resonance Imaging (MRI) data, straight axisymmetric tubes with varying cross-sectional areas, and two-tube approximations of the vocal tract with notched lips. All physical models had hard walls and closed glottis so the main loss mechanisms contributing to the bandwidths were sound radiation, viscosity, and heat conduction.

View Article and Find Full Text PDF

Directivity of speech and singing is determined primarily by the morphology of a person, i.e., head size, torso dimensions, posture, and vocal tract.

View Article and Find Full Text PDF

A detailed understanding of how the acoustic patterns of speech sounds are generated by the complex 3D shapes of the vocal tract is a major goal in speech research. The Dresden Vocal Tract Dataset (DVTD) presented here contains geometric and (aero)acoustic data of the vocal tract of 22 German speech sounds (16 vowels, 5 fricatives, 1 lateral), each from one male and one female speaker. The data include the 3D Magnetic Resonance Imaging data of the vocal tracts, the corresponding 3D-printable and finite-element models, and their simulated and measured acoustic and aerodynamic properties.

View Article and Find Full Text PDF

Simulations of waveguide acoustics require a description of the boundary condition at the open end. For problems involving higher order transverse modes, it is often described by a multimodal radiation impedance matrix. Expressions for the computation of this matrix for an infinite flange condition are available only for circular and rectangular cross-sectional shapes.

View Article and Find Full Text PDF

For many years, the vocal tract shape has been approximated by one-dimensional (1D) area functions to study the production of voice. More recently, 3D approaches allow one to deal with the complex 3D vocal tract, although area-based 3D geometries of circular cross-section are still in use. However, little is known about the influence of performing such a simplification, and some alternatives may exist between these two extreme options.

View Article and Find Full Text PDF

Three-dimensional (3-D) numerical approaches for voice production are currently being investigated and developed. Radiation losses produced when sound waves emanate from the mouth aperture are one of the key aspects to be modeled. When doing so, the lips are usually removed from the vocal tract geometry in order to impose a radiation impedance on a closed cross-section, which speeds up the numerical simulations compared to free-field radiation solutions.

View Article and Find Full Text PDF

In this paper, a multimodal theory accounting for higher order acoustical propagation modes is presented as an extension to the classical plane wave theory. This theoretical development is validated against experiments on vocal tract replicas, obtained using a 3D printer and finite element simulations. Simplified vocal tract geometries of increasing complexity are used to investigate the influence of some geometrical parameters on the acoustical properties of the vocal tract.

View Article and Find Full Text PDF