The present study provides new insight into the intrinsic mechanisms for the population of the triplet manifold in DNA nucleobases by determining, at the multiconfigurational CASSCF/CASPT2 level, the singlet-triplet states crossing regions and the main decay paths for their lowest singlet and triplet states after near-UV irradiation. The studied singlet-triplet interacting regions are accessible along the minimum energy path of the initially populated singlet bright (1)ππ* state. In particular, all five natural DNA/RNA nucleobases have, at the end of the main minimum energy path and near a conical intersection of the ground and (1)ππ* states, a low-energy, easily accessible, singlet-triplet crossing region directly connecting the lowest singlet and triplet ππ* excited states.
View Article and Find Full Text PDFThe population of the lowest triplet state of thymine after near-UV irradiation has been established, on the basis of CASPT2//CASSCF quantum chemical calculations, to take place via three distinct intersystem crossing mechanisms from the initially populated singlet bright 1pipi* state. Two singlet-triplet crossings have been found along the minimum-energy path for ultrafast decay of the singlet state at 4.8 and 4.
View Article and Find Full Text PDFUltrafast decay processes detected after absorption of UV radiation in gas-phase pyrimidine nucleobases uracil, thymine, and cytosine are ascribed to the barrierless character of the pathway along the low-lying 1(pipi*) hypersurface connecting the Franck-Condon region with an out-of-plane distorted ethene-like conical intersection with the ground state. Longer lifetime decays and low quantum yield emission are on the other hand related to the presence of a 1(pipi*) state planar minimum on the S1 surface and the barriers to access other conical intersections. A unified model for the three systems is established on the basis of accurate multiconfigurational CASPT2 calculations, whereas the effect of the different levels of theory on the results is carefully analyzed.
View Article and Find Full Text PDFThe electronic singlet-singlet and singlet-triplet electronic transitions of the isoalloxazine ring of the flavin core are studied using second-order perturbation theory within the framework of the CASPT2//CASSCF protocol. The main features of the absorption spectrum are computed at 3.09, 4.
View Article and Find Full Text PDFThe low-lying singlet states (i.e. S0, S1, and S2) of the chromophore of rhodopsin, the protonated Schiff base of 11-cis-retinal (PSB11), and of its all-trans photoproduct have been studied in isolated conditions by using ab initio multiconfigurational second-order perturbation theory.
View Article and Find Full Text PDF