Publications by authors named "Remco de Kock"

Objectives: Pathologic subtyping of tissue biopsies is the gold standard for the diagnosis of lung cancer (LC), which could be complicated in cases of e.g. inconclusive tissue biopsies or unreachable tumors.

View Article and Find Full Text PDF

Identification of actionable mutations in advanced stage non-squamous non-small-cell lung cancer (NSCLC) patients is recommended by guidelines as it enables treatment with targeted therapies. In current practice, mutations are identified by next-generation sequencing of tumor DNA (tDNA-NGS), which requires tissue biopsies of sufficient quality. Alternatively, circulating tumor DNA (ctDNA) could be used for mutation analysis.

View Article and Find Full Text PDF

Supernatant pleural effusions (PE) have shown to be a valuable source for the detection of driver mutations in circulating tumor DNA (ctDNA). In this prospective study, the clinical value of ctDNA analysis in supernatant PE to support therapy selection and disease monitoring in lung cancer patients is assessed. Paired PE and plasma samples were collected from lung cancer patients before initiation of therapy (N = 2) and from EGFR positive patients during therapy (N = 3).

View Article and Find Full Text PDF

Liquid biopsies have become of interest as minimally invasive ways to monitor treatment response in lung cancer patients. Circulating tumor DNA (ctDNA) and protein biomarkers are evaluated for their added value in monitoring therapy response and early detection of disease progression. Plasma and serum samples of non-small cell or small cell lung cancer patients were analyzed for driver mutations in ctDNA (EGFR, KRAS or BRAF) using droplet digital PCR and protein biomarkers (CA125, CEA, CA15.

View Article and Find Full Text PDF

The detection of EGFR-sensitizing and EGFR-resistance mutations in advanced non-small-cell lung cancer patients is important for the selection and monitoring of EGFR tyrosine-kinase inhibitor therapy. Droplet digital PCR (ddPCR) multiplex assays allow for sensitive and simultaneous detection of multiple mutations in cell-free DNA (cfDNA) with a minimum of extract needed and at lower cost. Patients were screened for the EGFR tyrosine-kinase inhibitor-sensitizing mutations Ex19Del, L858R, L861Q, G719S, and S768I using a novel ddPCR pentaplex assay.

View Article and Find Full Text PDF

The purpose of this study is to develop a one-step droplet digital RT-PCR (RT-ddPCR) multiplex assay that allows for sensitive quantification of SARS-CoV-2 RNA with respect to human-derived RNA and could be used for screening and monitoring of Covid-19 patients. A one-step RT-ddPCR multiplex assay was developed for simultaneous detection of SARS-CoV-2 E, RdRp and N viral RNA, and human Rpp30 DNA and GUSB mRNA, for internal nucleic acid (NA) extraction and RT-PCR control. Dilution series of viral RNA transcripts were prepared in water and total NA extract of Covid-19-negative patients.

View Article and Find Full Text PDF

For patients with suspected lung carcinoma, the analysis of circulating tumor DNA, obtained by liquid biopsy, has the potential to support cancer diagnosis and guide targeted therapy. To ensure sensitive and reproducible detection of circulating tumor DNA in routine clinical practice, a standardized (pre) analytical workflow is required. Plasma was obtained from patients and healthy volunteers.

View Article and Find Full Text PDF