Marker development for marker-assisted selection in plant breeding is increasingly based on next-generation sequencing (NGS). However, marker development in crops with highly repetitive, complex genomes is still challenging. Here we applied sequence-based genotyping (SBG), which couples AFLP®-based complexity reduction to NGS, for de novo single nucleotide polymorphisms (SNP) marker discovery in and genotyping of a biparental durum wheat population.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2012
Transcription activator-like effector (TALE) proteins of the plant pathogenic bacterial genus Xanthomonas bind to and transcriptionally activate host susceptibility genes, promoting disease. Plant immune systems have taken advantage of this mechanism by evolving TALE binding sites upstream of resistance (R) genes. For example, the pepper Bs3 and rice Xa27 genes are hypersensitive reaction plant R genes that are transcriptionally activated by corresponding TALEs.
View Article and Find Full Text PDFThe oxylipin pathway is commonly involved in induced plant defenses, and is the main signal-transduction pathway induced by insect folivory. Herbivory induces the production of several oxylipins, and consequently alters the so-called 'oxylipin signature' in the plant. Jasmonic acid (JA), as well as pathway intermediates are known to induce plant defenses.
View Article and Find Full Text PDFNatural variation in gene expression (expression traits or e-traits) is increasingly used for the discovery of genes controlling traits. An important question is whether a particular e-trait is correlated with a phenotypic trait. Here, we examined the correlations between phenotypic traits and e-traits among 10 Arabidopsis thaliana accessions.
View Article and Find Full Text PDFMol Plant Microbe Interact
September 2005
Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set of microbial pathogens and herbivorous insects with different modes of attack. Arabidopsis plants were exposed to a pathogenic leaf bacterium (Pseudomonas syringae pv.
View Article and Find Full Text PDFTranscript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host.
View Article and Find Full Text PDFPlants can use indirect defence mechanisms to protect themselves against herbivorous insects. An example of such an indirect defence mechanism is the emission of volatiles by plants induced by herbivore feeding. These volatiles can attract the natural enemies of these herbivores, for example, parasitoid wasps.
View Article and Find Full Text PDF