Publications by authors named "Remco Chang"

Dimensionality reduction techniques are widely used for visualizing high-dimensional data. However, support for interpreting patterns of dimension reduction results in the context of the original data space is often insufficient. Consequently, users may struggle to extract insights from the projections.

View Article and Find Full Text PDF

Visual validation of regression models in scatterplots is a common practice for assessing model quality, yet its efficacy remains unquantified. We conducted two empirical experiments to investigate individuals' ability to visually validate linear regression models (linear trends) and to examine the impact of common visualization designs on validation quality. The first experiment showed that the level of accuracy for visual estimation of slope (i.

View Article and Find Full Text PDF

This study presents insights from interviews with nineteen Knowledge Graph (KG) practitioners who work in both enterprise and academic settings on a wide variety of use cases. Through this study, we identify critical challenges experienced by KG practitioners when creating, exploring, and analyzing KGs that could be alleviated through visualization design. Our findings reveal three major personas among KG practitioners - KG Builders, Analysts, and Consumers - each of whom have their own distinct expertise and needs.

View Article and Find Full Text PDF

Data integration is often performed to consolidate information from multiple disparate data sources during visual data analysis. However, integration operations are usually separate from visual analytics operations such as encode and filter in both interface design and empirical research. We conducted a preliminary user study to investigate whether and how data integration should be incorporated directly into the visual analytics process.

View Article and Find Full Text PDF

Visualization researchers and visualization professionals seek appropriate abstractions of visualization requirements that permit considering visualization solutions independently from specific problems. Abstractions can help us design, analyze, organize, and evaluate the things we create. The literature has many task structures (taxonomies, typologies, etc.

View Article and Find Full Text PDF

Food purchase choices, one of the main determinants of food consumption, is highly influenced by food environments. Given the surge in online grocery shopping because of the COVID-19 pandemic, interventions in digital environments present more than ever an opportunity to improve the nutritional quality of food purchase choices. One such opportunity can be found in gamification.

View Article and Find Full Text PDF

Presenting a predictive model's performance is a communication bottleneck that threatens collaborations between data scientists and subject matter experts. Accuracy and error metrics alone fail to tell the whole story of a model - its risks, strengths, and limitations - making it difficult for subject matter experts to feel confident in their decision to use a model. As a result, models may fail in unexpected ways or go entirely unused, as subject matter experts disregard poorly presented models in favor of familiar, yet arguably substandard methods.

View Article and Find Full Text PDF

Multiple-view (MV) visualizations have become ubiquitous for visual communication and exploratory data visualization. However, most existing MV visualizations are designed for the desktop, which can be unsuitable for the continuously evolving displays of varying screen sizes. In this article, we present a two-stage adaptation framework that supports the automated retargeting and semi-automated tailoring of a desktop MV visualization for rendering on devices with displays of varying sizes.

View Article and Find Full Text PDF

Photoswitches are molecules that undergo a reversible, structural isomerization after exposure to certain wavelengths of light. The dynamic control offered by molecular photoswitches is favorable for materials chemistry, photopharmacology, and catalysis applications. Ideal photoswitches absorb visible light and have long-lived metastable isomers.

View Article and Find Full Text PDF

Projection techniques are often used to visualize high-dimensional data, allowing users to better understand the overall structure of multi-dimensional spaces on a 2D screen. Although many such methods exist, comparably little work has been done on generalizable methods of inverse-projection - the process of mapping the projected points, or more generally, the projection space back to the original high-dimensional space. In this article we present NNInv, a deep learning technique with the ability to approximate the inverse of any projection or mapping.

View Article and Find Full Text PDF

Interactive visualization design and research have primarily focused on local data and synchronous events. However, for more complex use cases-e.g.

View Article and Find Full Text PDF

Progressive visualization is fast becoming a technique in the visualization community to help users interact with large amounts of data. With progressive visualization, users can examine intermediate results of complex or long running computations, without waiting for the computation to complete. While this has shown to be beneficial to users, recent research has identified potential risks.

View Article and Find Full Text PDF

Most visual analytics systems assume that all foraging for data happens before the analytics process; once analysis begins, the set of data attributes considered is fixed. Such separation of data construction from analysis precludes iteration that can enable foraging informed by the needs that arise in-situ during the analysis. The separation of the foraging loop from the data analysis tasks can limit the pace and scope of analysis.

View Article and Find Full Text PDF

Static scatterplots often suffer from the overdraw problem on big datasets where object overlap causes undesirable visual clutter. The use of zooming in scatterplots can help alleviate this problem. With multiple zoom levels, more screen real estate is available, allowing objects to be placed in a less crowded way.

View Article and Find Full Text PDF

Multiple-view visualization (MV) is a layout design technique often employed to help users see a large number of data attributes and values in a single cohesive representation. Because of its generalizability, the MV design has been widely adopted by the visualization community to help users examine and interact with large, complex, and high-dimensional data. However, although ubiquitous, there has been little work to categorize and analyze MVs in order to better understand its design space.

View Article and Find Full Text PDF

Objective: To describe characteristics of self-identified popular diet followers and compare mean BMI across these diets, stratified by time following diet.

Design: Cross-sectional, web-based survey administered in 2015.

Setting: Non-localised, international survey.

View Article and Find Full Text PDF

Interactive data exploration and analysis is an inherently personal process. One's background, experience, interests, cognitive style, personality, and other sociotechnical factors often shape such a process, as well as the provenance of exploring, analyzing, and interpreting data. This Viewpoint posits both what personal information and how such personal information could be taken into account to design more effective visual analytic systems, a valuable and under-explored direction.

View Article and Find Full Text PDF

The performance of deep learning models is dependent on the precise configuration of many layers and parameters. However, there are currently few systematic guidelines for how to configure a successful model. This means model builders often have to experiment with different configurations by manually programming different architectures (which is tedious and time consuming) or rely on purely automated approaches to generate and train the architectures (which is expensive).

View Article and Find Full Text PDF

Latency in a visualization system is widely believed to affect user behavior in measurable ways, such as requiring the user to wait for the visualization system to respond, leading to interruption of the analytic flow. While this effect is frequently observed and widely accepted, precisely how latency affects different analysis scenarios is less well understood. In this paper, we examine the role of latency in the context of visual search, an essential task in data foraging and exploration using visualization.

View Article and Find Full Text PDF

Interactive model steering helps people incrementally build machine learning models that are tailored to their domain and task. Existing visual analytic tools allow people to steer a single model (e.g.

View Article and Find Full Text PDF

We present RNNbow, an interactive tool for visualizing the gradient flow during backpropagation in training of recurrent neural networks. By visualizing the gradient, as opposed to activations, RNNbow offers insight into how the network is learning. We show how it illustrates the vanishing gradient and the training process.

View Article and Find Full Text PDF

When inspecting information visualizations under time critical settings, such as emergency response or monitoring the heart rate in a surgery room, the user only has a small amount of time to view the visualization "at a glance". In these settings, it is important to provide a quantitative measure of the visualization to understand whether or not the visualization is too "complex" to accurately judge at a glance. This paper proposes Pixel Approximate Entropy (PAE), which adapts the approximate entropy statistical measure commonly used to quantify regularity and unpredictability in time-series data, as a measure of visual complexity for line charts.

View Article and Find Full Text PDF

Recent visualization research efforts have incorporated experimental techniques and perceptual models from the vision science community. Perceptual laws such as Weber's law, for example, have been used to model the perception of correlation in scatterplots. While this thread of research has progressively refined the modeling of the perception of correlation in scatterplots, it remains unclear as to why such perception can be modeled using relatively simple functions, e.

View Article and Find Full Text PDF

Prostate cancer is the most common cancer among men in the US, and yet most cases represent localized cancer for which the optimal treatment is unclear. Accumulating evidence suggests that the available treatment options, including surgery and conservative treatment, result in a similar prognosis for most men with localized prostate cancer. However, approximately 90% of patients choose surgery over conservative treatment, despite the risk of severe side effects like erectile dysfunction and incontinence.

View Article and Find Full Text PDF

Decades of research have repeatedly shown that people perform poorly at estimating and understanding conditional probabilities that are inherent in Bayesian reasoning problems. Yet in the medical domain, both physicians and patients make daily, life-critical judgments based on conditional probability. Although there have been a number of attempts to develop more effective ways to facilitate Bayesian reasoning, reports of these findings tend to be inconsistent and sometimes even contradictory.

View Article and Find Full Text PDF